
# DIGITAL 8000 SERIES TTL/MSI

#### **DESCRIPTION**

The 8275 is a QUAD LATCH circuit designed to provide temporary storage of four bits of information. A common application is as a holding register between a counter and a display driver (such as the 8280 and 8T01.) Separate enable lines to latches 1-2 and 3-4 allow individual control of each

pair of latches. Initially, data is transferred on the rising edge of the enable pulse. While the enable is high, output Q follows the data input. When the enable falls, the input data present at fall time is retained at the Q output. Both Q and  $\overline{\mathbf{Q}}$  are accessible.

### LOGIC DIAGRAM AND TRUTH TABLE

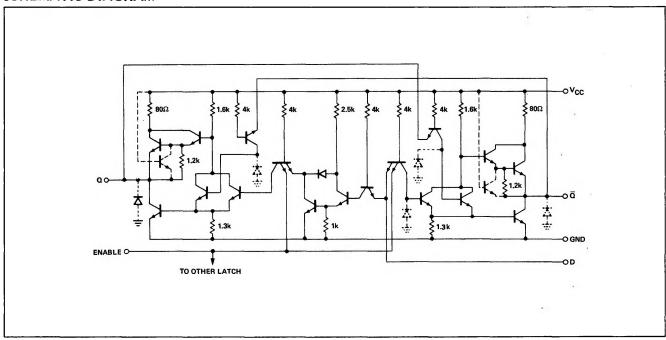


#### **ELECTRICAL CHARACTERISTICS** (Over Recommended Operating Temperature And Voltage)

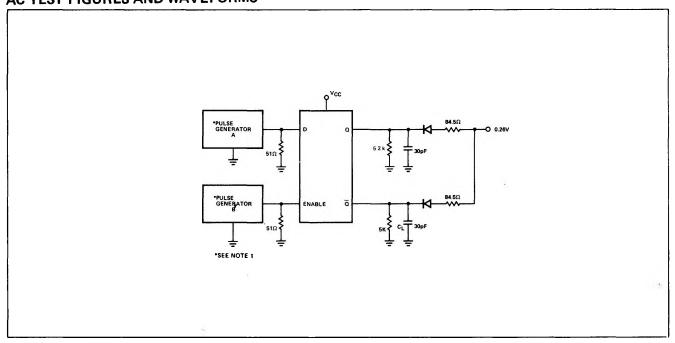
| CHARACTERISTICS            |      | LIMITS |      |       |               | TEST CONDITIONS |          |       |
|----------------------------|------|--------|------|-------|---------------|-----------------|----------|-------|
|                            | MIN. | TYP.   | MAX. | UNITS | DATA<br>INPUT | ENABLE<br>INPUT | OUTPUTS  | NOTES |
| "1" Output Voltage (Q, Q)  | 2.6  | 3.5    |      | V     |               |                 | -800μA   | 6, 11 |
| "0" Output Voltage (Q, Q)  |      |        | 0.4  | V     |               |                 | 16mA     | 7, 11 |
| "0" Input Current (Data)   | -0.1 |        | -3.2 | mA    | 0.4V          | 5.25V           |          | ,     |
| "0" Input Current (Enable) | -0.1 |        | -6.4 | m A   | 5.25V         | 0.4V            |          |       |
| "1" Input Current (Data)   |      |        | 80   | μА    | 4.5V          | 0.0V            |          |       |
| "1" Input Current (Enable) |      |        | 160  | μΑ    | 0.0V          | 4.5V            | <u>'</u> |       |

## $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

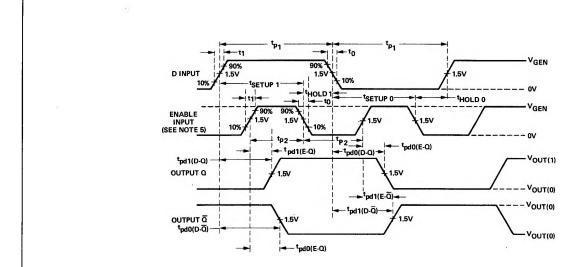
| CHARACTERISTICS                     |      | LIMITS |        |       |               | TEST CONDITIONS |         |       |
|-------------------------------------|------|--------|--------|-------|---------------|-----------------|---------|-------|
|                                     | MIN. | TYP.   | MAX.   | UNITS | DATA<br>INPUT | ENABLE<br>INPUT | OUTPUTS | NOTES |
| t <sub>setup</sub> (1) at D input   |      | 12     | 20     | ns    |               |                 |         | 8, 12 |
| tsetup ( <b>0</b> ) at D input      |      | 14     | 20     | ns    |               |                 |         | 8, 12 |
| <sup>t</sup> hold (1) at D input    | 0    | 15     |        | ns    |               |                 |         | 8, 13 |
| <sup>t</sup> hold (0) at D input    | 0    | 6      |        | nş    |               |                 |         | 8, 13 |
| <sup>t</sup> pd (1) D to Q          |      | 16     | 30     | ns    |               |                 |         | 8     |
| pd (0) D to Q                       |      | 14     | 25     | ns    |               |                 |         | 8     |
| pd (1) D to $\overline{\mathbb{Q}}$ |      | 24     | 40     | ns    |               |                 |         | 8     |
| pd (0) D to Q                       |      | 7      | 15     | ns    |               |                 |         | 8     |
| <sup>t</sup> pd (1) E to Q          |      | 16     | 30     | ns    |               |                 |         | 8     |
| <sup>t</sup> pd (0) E to Q          |      | 12     | 20     | ns    |               |                 |         | 8     |
| <sup>t</sup> pd (1) E to Q          |      | 16     | 30     | ns    |               |                 |         | 8     |
| $^{t}$ pd (0) E to $\overline{Q}$   |      | 12     | 20     | ns    | İ             |                 |         | 8     |
| Power Consumption/Supply Current    |      | 205/39 | 265/50 | mW/mA |               |                 |         | 14    |
| Input Voltage Rating (Data)         | 5.5  |        |        | V     | 10mA          | 0.0∨            |         | 12    |
| Input Voltage Rating (Enable)       | 5.5  |        | 1      | V     | 0.0∨          | 10mA            |         | 12    |
| Output Short Circuit Current        | -20  |        | -70    | mA    | 0.0∨          |                 | 0.0∨    | 1     |


#### SIGNETICS DIGITAL 8000 SERIES TTL/MSI - 8275

#### NOTES:


- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
- All measurements are taken with ground pin tied to zero 2. volts.
- Positive current flow is defined as into the terminal referenced, 3.
- Positive NAND Logic Definition: 4.
  - "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- Output source current is supplied through a resistor to

- 7. Output sink current is supplied through a resistor to V<sub>CC</sub>.
- 8. Refer to AC Test Figure.
- Manufacturer reserves the right to make design and process 9. changes and improvements.
- 10. Inputs for output voltage test is per TRUTH TABLE with threshold levels of 0.8V for logical "0" and 2.0V for logical "1".
- 11. This test guarantees operation free of input latch-up over the  $t_{\rm setup}$  is defined as the time prior to the fall of the clock. thold is defined as the time after the fall of the clock.  $V_{\rm CC}$  = 5.25 volts.
- 12.
- 13.
- 14.


#### **SCHEMATIC DIAGRAM**



## **AC TEST FIGURES AND WAVEFORMS**



#### AC TEST FIGURES AND WAVEFORMS (Cont'd)



#### NOTES:

- The pulse generators have the following characteristics: V<sub>gen</sub> = 3V, t<sub>1</sub> = t<sub>0</sub>≤10ns, and Z<sub>out</sub> ≈50Ω. For pulse generator A tp 1 = 1µs and PRR = 500kHz. For pulse generator B, tp2 = 500ns and Prr = 1MHz. Positions of D-input and enable input pulses are varied with respect to each other to verify setup and hold times.
- 2. Each latch is tested separately.
- 3. C<sub>1</sub> includes probe and jig capacitance.
- 4. All diodes are 1N916.
- 5. When measuring tpd1 (D-Q), tpd0 (D-Q), tpd0 (D-Q), and tpd1(D-Q), enable input must be held at logical 1.

### TYPICAL APPLICATION

### **OUTPUT STROBING OF RIPPLE COUNTER TO ACHIEVE SYNCHRONOUS OUTPUT CHANGES** ONE SHOT CLOCK 8162 (t = 100 ns) DATA STROBE C<sub>1</sub> DS EN<sub>1</sub> EN<sub>2</sub> $c_2$ DA O-RIPPLE COUNTER 8280 8281 8288 8290 D<sub>0</sub> DA 8250/51 8230/31/32 BOUT QUAD LATCH 8275 D<sub>2</sub> $\mathbf{q}_2$ DC 8291 8292 8293 COUT D<sub>D</sub>O-DOUT $D_3$ R<sub>D</sub>