82S16/116-F,N • 82S17/117-F,N

DESCRIPTION

The 82S16/116 and 82S17/117 are read/ write memory arrays which feature either open collector or tri-state output options for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and pnp input transistors which reduce input loading to 25µA for a high level, and -100µA for a low level.

During Write operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of Write-Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a Write cycle.

Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

All devices are available in the commercial temperature range (0°C to +75°C) and are specified as N82S16/116/17/117, F or N. The 82S16 and 82S17 are also available in the military temperature range (-55°C to +125°C) and are specified as S82S16/17.

FEATURES

- Address access time:
 82S116/117: 40ns max
- Write cycle time: 82S116/117: 25ns max
- Power dissipation: 1.5mW/bit typ
- Input loading:
 - N82S116/117: -100µA
- Output follows complement of data input during Write
- On-chip address decoding
- Output option:

82S16/116: Tri-state 82S17/117: Open collector

- Schottky clamped
- TTL compatible

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

PIN CONFIGURATION

TRUTH TABLE

MODE	CE*	WE		POUT				
MODE	CE	WE	DIN	82\$16/116	82S17/117			
Read	0	1	х	Stored data	Stored data			
Write "0"	0	0	0	1	1			
Write "1"	0	0	1	0	0			
Diasabled	1	×	x	High-Z	1			

*"0" = All \overline{CE} inputs low; "1" = one or more \overline{CE} inputs high.

X = Don't care.

BLOCK DIAGRAM

82S16/116-F,N • 82S17/117-F,N

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
Vcc	Supply voltage	+7	Vdc
VIN	Input voltage	+5.5	Vdc
	Output voltage	+5.5	Vdc
Vout	High (82S17)		
Vo	Off-state (82S16)		
	Temperature range		°C
T_A	Operating		
	S82S16/17	-55 to + 125	
	N82S16/17, N82S116/117	0 to +75	
T _{STG}	Storage	-65 to +150	
Sid			

DC ELECTRICAL CHARACTERISTICS N82S116/117, N82S16/17: 0° C \leq T_A \leq +75° C, 4.75V \leq V_{CC} \leq 5.25V S82S16/17: -55° C \leq T_A \leq +125° C, 4.5V \leq V_{CC} \leq 5.5V

PARAMETER			N829	316/17/1	16/117	S82S16/17			
		TEST CONDITIONS	Min	Tyṗ¹	Max	Mip	Typ ¹	. Max	MNIT
VIH VIL VIC	Input voltage ² High Low Clamp ³	V _{CC} = Max V _{CC} = Min V _{CC} = Min, I _{IN} = -12mA	2.0	-1.0	0.85 -1.5	2.0	-1.0	0.8 -1.5	۷
Vон Vol	Output voltage ² High (82S16/116) ⁴ Low ⁵	V _{CC} = Min I _{OH} = -3.2mA I _{OL} = 16mA	2.6	0.35	0.45	2.4	0.35	0.5	V
lin lic	Input current ³ High Low	V _{CC} = Max V _{IN} = 5.5V V _{IN} = 0.45V	1	1 -10	25 -100		1 -10	25 -250	mA
IOLK IO(OFF) IOS	Output current Leakage (82S17/117)6 Hi-Z state (82S16/116)6 Short-circuit (82S16/116)7	V _{OUT} = 5.5V V _{OUT} = 5.5V V _{OUT} = 0.45V V _{CC} = Max, V _O = 0V	-20	1 1 -1	40 40 -40 -70	-20	1 1 -1	40 50 -50 -70	μΑ μΑ
Icc	Vcc supply current	V _{CC} = Max		80	115		80	120	mA
Cin Cout	Capacitance Input Output	V _{CC} = 5.0V V _{IN} = 2.0V V _{OUT} = 2.0V		5 8			5 8		pF

82S16/116-F.N • 82S17/117-F.N

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$

N82S116/117, N82S16/17: 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25V

S82S16/17: -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5V

			N82S16/17			N82S116/117			S82S16/17				
	PARAMETER	то	FROM	Min	Typ¹	Max	Min	Typ1	Max	Min	Typ1	Max	UNIT
T _{AA} T _{CE}	Access time Address Chip enable				40 30	50 40		30 15	40 25		40 30	70 40	ns
T _{CD} T _{WD}	Disable time Valid time	Output Output	Chip enable Write enable		30 30	40 40		15 30	25 40		30 30	40 55	ns ns
Twsa Twha	Setup and hold time Setup time Hold time	Write enable	Address	20 5	5 0		0	-5 -5		20 10	5 0		ns
T _{WSD} T _{WHD}	Setup time Hold time	Write enable	Data in	40 5	30 0		25 0	15 -5	-	50 10	40 0		
Twsc Twhc	Setup time Hold time	Write enable	CE	10 5	0		0	-5 -5		10 10	0		
T _{WP}	Pulse width Write enable ⁸			30	15		25	15		40	20		ns

NOTES

- 1. All typical values are at V_{CC} = 5V, T_A +25°C.
- 2. All voltage values are with respect to network ground terminal.
- 3. Test each input one at the time.
- 4. Measured with a logic low stored and V_{IL} applied to CE₁, CE₂ and CE₃.
- 5. Measured with a logic high stored. Output sink current is supplied through a resistor to Vcc. 6. Measured with ViH applied to CE1, CE2 and CE3.
- 7. Duration of the short-circuit should not exceed 1 second.
- 8. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.
- 9. Minimum required to guarantee a Write into the slowest bit.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

82S16/116-F,N • 82S17/117-F,N

TIMING DIAGRAMS

MEMORY TIMING DEFINITIONS

- Tce Delay between beginning of Chip Enable low (with Address valid)
 and when Data Output becomes
- TcD Delay between when Chip Enable becomes high and Data Output is in off state.
- TAA Delay between beginning of valid Address (with Chip Enable low) and when Data Output becomes valid.
- Twsc Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
- TWHD Required delay between end of Write Enable pulse and end of valid Input Data.
- Twp Width of Write Enable pulse.
- Twsa Required delay between beginning of valid Address and beginning of Write Enable pulse.
- Twsb Required delay between beginning of valid Data Input and end of Write Enable pulse.
- Two Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data
- TWHC Required delay between end of Write Enable pulse and end of Chip Enable.
- TWHA Required delay between end of Write Enable pulse and end of valid Address.