82S16/116-F,N • 82S17/117-F,N ### DESCRIPTION The 82S16/116 and 82S17/117 are read/ write memory arrays which feature either open collector or tri-state output options for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and pnp input transistors which reduce input loading to 25µA for a high level, and -100µA for a low level. During Write operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of Write-Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a Write cycle. Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc. All devices are available in the commercial temperature range (0°C to +75°C) and are specified as N82S16/116/17/117, F or N. The 82S16 and 82S17 are also available in the military temperature range (-55°C to +125°C) and are specified as S82S16/17. # **FEATURES** - Address access time: 82S116/117: 40ns max - Write cycle time: 82S116/117: 25ns max - Power dissipation: 1.5mW/bit typ - Input loading: - N82S116/117: -100µA - Output follows complement of data input during Write - On-chip address decoding - Output option: 82S16/116: Tri-state 82S17/117: Open collector - Schottky clamped - TTL compatible ## **APPLICATIONS** - Buffer memory - Writable control store - Memory mapping - Push down stack - Scratch pad ### PIN CONFIGURATION ### TRUTH TABLE | MODE | CE* | WE | | POUT | | | | | |-----------|-----|----|-----|----------------|-------------|--|--|--| | MODE | CE | WE | DIN | 82\$16/116 | 82S17/117 | | | | | Read | 0 | 1 | х | Stored
data | Stored data | | | | | Write "0" | 0 | 0 | 0 | 1 | 1 | | | | | Write "1" | 0 | 0 | 1 | 0 | 0 | | | | | Diasabled | 1 | × | x | High-Z | 1 | | | | *"0" = All \overline{CE} inputs low; "1" = one or more \overline{CE} inputs high. X = Don't care. ## **BLOCK DIAGRAM** 82S16/116-F,N • 82S17/117-F,N # **ABSOLUTE MAXIMUM RATINGS** | | PARAMETER | RATING | UNIT | |------------------|------------------------|--------------|------| | Vcc | Supply voltage | +7 | Vdc | | VIN | Input voltage | +5.5 | Vdc | | | Output voltage | +5.5 | Vdc | | Vout | High (82S17) | | | | Vo | Off-state (82S16) | | | | | Temperature range | | °C | | T_A | Operating | | | | | S82S16/17 | -55 to + 125 | | | | N82S16/17, N82S116/117 | 0 to +75 | | | T _{STG} | Storage | -65 to +150 | | | Sid | | | | # DC ELECTRICAL CHARACTERISTICS N82S116/117, N82S16/17: 0° C \leq T_A \leq +75° C, 4.75V \leq V_{CC} \leq 5.25V S82S16/17: -55° C \leq T_A \leq +125° C, 4.5V \leq V_{CC} \leq 5.5V | PARAMETER | | | N829 | 316/17/1 | 16/117 | S82S16/17 | | | | |------------------------|---|--|------|--------------|------------------------|-----------|------------------|------------------------|----------| | | | TEST CONDITIONS | Min | Tyṗ¹ | Max | Mip | Typ ¹ | . Max | MNIT | | VIH
VIL
VIC | Input voltage ²
High
Low
Clamp ³ | V _{CC} = Max
V _{CC} = Min
V _{CC} = Min, I _{IN} = -12mA | 2.0 | -1.0 | 0.85
-1.5 | 2.0 | -1.0 | 0.8
-1.5 | ۷ | | Vон
Vol | Output voltage ²
High (82S16/116) ⁴
Low ⁵ | V _{CC} = Min
I _{OH} = -3.2mA
I _{OL} = 16mA | 2.6 | 0.35 | 0.45 | 2.4 | 0.35 | 0.5 | V | | lin
lic | Input current ³ High Low | V _{CC} = Max
V _{IN} = 5.5V
V _{IN} = 0.45V | 1 | 1
-10 | 25
-100 | | 1
-10 | 25
-250 | mA | | IOLK
IO(OFF)
IOS | Output current
Leakage (82S17/117)6
Hi-Z state (82S16/116)6
Short-circuit (82S16/116)7 | V _{OUT} = 5.5V
V _{OUT} = 5.5V
V _{OUT} = 0.45V
V _{CC} = Max, V _O = 0V | -20 | 1
1
-1 | 40
40
-40
-70 | -20 | 1
1
-1 | 40
50
-50
-70 | μΑ
μΑ | | Icc | Vcc supply current | V _{CC} = Max | | 80 | 115 | | 80 | 120 | mA | | Cin
Cout | Capacitance
Input
Output | V _{CC} = 5.0V
V _{IN} = 2.0V
V _{OUT} = 2.0V | | 5
8 | | | 5
8 | | pF | 82S16/116-F.N • 82S17/117-F.N # AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$ N82S116/117, N82S16/17: 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25V S82S16/17: -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5V | | | | N82S16/17 | | | N82S116/117 | | | S82S16/17 | | | | | |--------------------------------------|--|------------------|-----------------------------|---------|----------|-------------|---------|----------|-----------|----------|----------|----------|----------| | | PARAMETER | то | FROM | Min | Typ¹ | Max | Min | Typ1 | Max | Min | Typ1 | Max | UNIT | | T _{AA}
T _{CE} | Access time
Address
Chip enable | | | | 40
30 | 50
40 | | 30
15 | 40
25 | | 40
30 | 70
40 | ns | | T _{CD}
T _{WD} | Disable time
Valid time | Output
Output | Chip enable
Write enable | | 30
30 | 40
40 | | 15
30 | 25
40 | | 30
30 | 40
55 | ns
ns | | Twsa
Twha | Setup and hold time
Setup time
Hold time | Write enable | Address | 20
5 | 5
0 | | 0 | -5
-5 | | 20
10 | 5
0 | | ns | | T _{WSD}
T _{WHD} | Setup time
Hold time | Write enable | Data in | 40
5 | 30
0 | | 25
0 | 15
-5 | - | 50
10 | 40
0 | | | | Twsc
Twhc | Setup time
Hold time | Write enable | CE | 10
5 | 0 | | 0 | -5
-5 | | 10
10 | 0 | | | | T _{WP} | Pulse width
Write enable ⁸ | | | 30 | 15 | | 25 | 15 | | 40 | 20 | | ns | #### NOTES - 1. All typical values are at V_{CC} = 5V, T_A +25°C. - 2. All voltage values are with respect to network ground terminal. - 3. Test each input one at the time. - 4. Measured with a logic low stored and V_{IL} applied to CE₁, CE₂ and CE₃. - 5. Measured with a logic high stored. Output sink current is supplied through a resistor to Vcc. 6. Measured with ViH applied to CE1, CE2 and CE3. - 7. Duration of the short-circuit should not exceed 1 second. - 8. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open. - 9. Minimum required to guarantee a Write into the slowest bit. ## **TEST LOAD CIRCUIT** # **VOLTAGE WAVEFORM** 82S16/116-F,N • 82S17/117-F,N ## **TIMING DIAGRAMS** ### **MEMORY TIMING DEFINITIONS** - Tce Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes - TcD Delay between when Chip Enable becomes high and Data Output is in off state. - TAA Delay between beginning of valid Address (with Chip Enable low) and when Data Output becomes valid. - Twsc Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse. - TWHD Required delay between end of Write Enable pulse and end of valid Input Data. - Twp Width of Write Enable pulse. - Twsa Required delay between beginning of valid Address and beginning of Write Enable pulse. - Twsb Required delay between beginning of valid Data Input and end of Write Enable pulse. - Two Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data - TWHC Required delay between end of Write Enable pulse and end of Chip Enable. - TWHA Required delay between end of Write Enable pulse and end of valid Address.