1024 x 1 BIT BIPOLAR RAM OPEN COLLECTOR | 93415A (93415A) TRI-STATE (93425A)

MARCH 1975 DIGITAL 8000 SERIES TTL MEMORY

DESCRIPTION

The 93415A and 93425A are high speed 1024-bit random access memories organized as 1024 words X 1 bit. With a typical access time of 30ns, they are ideal for cache buffer applications and for systems requiring very high speed main memory,

Both the 93415A and 93425A require a single +5 volts power supply and feature very low current PNP input structures. They are fully TTL compatible, and include on-chip decoding and a chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.

Both 93415A and 93425A devices are available in the commercial temperature range (0°C to +75°C).

FEATURES

- ORGANIZATION 1024 X 1
- ADDRESS ACCESS TIME 45ns, MAXIMUM
- WRITE CYCLE TIME 45ns, MAXIMUM
- POWER DISSIPATION 0.5mW/BIT, TYPICAL
- INPUT LOADING (-100µA) MAXIMUM
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS: 93415A - OPEN COLLECTOR **93425A - TRI-STATE**
- NON-INVERTING OUTPUT
- BLANKED OUTPUT DURING WRITE
- 16 PIN CERAMIC PACKAGE

APPLICATIONS

HIGH SPEED MAIN FRAME CACHE MEMORY BUFFER STORAGE WRITABLE CONTROL STORE

PIN CONFIGURATION

TRUTH TABLE

MODE	CE	WE	DIN	DC	TUC		
	,		- 114	93415A	93425A		
READ	0	1	Х	STORED	STORED		
	1			DATA	DATA		
WRITE "0"	0	0	0	1	High-Z		
WRITE "1"	0	0	1	1	High-Z		
DISABLED	1	Х	Х	1	High-Z		

X = Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER ¹	RATING	UNIT
V _{CC}	Power Supply Voltage	+7	Vdc
V _{in}	Input Voltage	+5.5	Vdc
Voh	High Level Output Voltage (93415A)	+5.5	Vdc
v _o	Off-State Output Voltage (93425A)	+5.5	Vdc
TA	Operating Temperature Range	0° to +75°	°c
T _{stg}	Storage Temperature Range	-65° to +150°	°C

ELECTRICAL CHARACTERISTICS 0° C \leq TA \leq +75 $^{\circ}$ C, 4.75V \leq VCC \leq 5.25

PARAMETER			93415A/93425A			
		TEST CONDITIONS	MIN	TYP ²	MAX	UNIT
VIL	Low Level Input Voltage	V _{CC} = MIN (Note 1)			.85	V
V_{IH}	High Level Input Voltage	V _{CC} = MAX (Note 1)	2.1			V
V _{IC}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -12mA (Note 1, 7)		-1.0	-1.5	V
V _{OL}	Low Level Output Voltage	V _{CC} = MIN, I _{OL} = 16mA (Note 1, 8)		0.35	0.45	V
V _{OH}	High Level Output Voltage (93425A)	V _{CC} = MIN, I _{OH} = -2mA (Note 1, 5)	2.4			V
lork	Output Leakage Current (93415A)	V _{CC} = MAX, V _{OUT} = 5.5V (Note 6)		1	40	μΑ
(O(OFF)	Hi-Z State Output Current (93425A)	$V_{CC} = MAX, V_{OUT} = 5.5V$ $V_{CC} = MAX, V_{OUT} = 0.45V$ (Note 6)		1 -1	60 -60	μΑ μΑ
HL	Low Level Input Current	V _{IN} = 0.45V		-10	-100	μΑ
I _{IH}	High Level Input Current	V _{IN} = 5.5V		1	25	μΑ
los	Short Circuit Output Current (93425A)	V _{CC} = MAX, V _{OUT} = 0V (Note 3)	-20		-100	mA
Icc	V _{CC} Supply Current	$V_{CC} = MAX \text{ (Note 4)}$ $0 < T_A < 25^{\circ}C$ $T_A \ge 25^{\circ}C$ $T_A \le 0^{\circ}C$		120 95	155 130 170	mA mA mA
C _{IN}	Input Capacitance	$V_{CC} = 5.0V, V_{IN} = 2.0V$		4		pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0V, V _{OUT} = 2.0V		7		pF

NOTES

- 1. All voltage values are with respect to network ground terminal.
- 2. All typical values are at V_{CC} = 5V, T_A = 25°C.
- 3. Duration of the short-circuit should not exceed one second.
- 4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.
- 5. Measured with V_{IL} applied to $\overline{\text{CE}}$ and a logic "1" stored.
- 6. Measured with VIH applied to CE.
- 7. Test each input one at the time.
- 8. Measured with a logic "0" stored. Output sink current is supplied through a resistor to $V_{\hbox{\footnotesize{CC}}}$.
- 9. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
 - $\phi_{ extsf{JA}}$ Junction to Ambient at 400 fpm air flow 50 $^{\circ}$ C/Watt
 - $\phi_{
 m JA}$ Junction to Ambient still air 90° C/Watt
 - $\phi_{
 m JA}$ Junction to Case 20 $^{\circ}$ C/Watt

SWITCHING CHARACTERISTICS³ $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C$, 4.75 $V \leqslant V_{CC} \leqslant 5.25$

PARAMETER			93415A/93425A			T
		TEST CONDITIONS	MIN	TYP ¹	MAX	UNIT
Propaga	tion Delays					
TAA	Address Access Time			30	45	ns
T _{CE}	Chip Enable Access Time			15	30	ns
T_{CD}	Chip Enable Output Disable Time			15	30	ns
T_{WD}	Write Enable to Output Disable Time			20	30	nş
T_{WR}	Write Recovery Time			20	30	ns
Write So	et-up Times					
T _{WSA}	Address to Write Enable	$C_L = 30pF$ $R_1 = 270\Omega$	5	О		ns
T _{WSD}	Data In to Write Enable	$R_2 = 600\Omega$	40	35		ns
T _{WSC}	CE to Write Enable		5	0		ns
Write H	old Times					
T_{WHA}	Address to Write Enable		5	0		ns
T_{WHD}	Data In to Write Enable		5	0	F.	ns
T _{WHC}	CE to Write Enable		5	0		ns
T_{WP}	Write Enable Pulse Width (Note 2)		35	25		ns

AC TEST LOAD

NOTES:

- 1. Typical values are at V_{CC} = +5.0V, and T_A = +25 $^{\circ}$ C.
- 2. Minimum required to guarantee a WRITE into the slowest bit.
- 3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
 - $heta_{
 m JA}$ Junction to Ambient at 400 fpm air flow 50 $^{\circ}$ C/Watt
 - $\theta_{\rm JA}$ Junction to Ambient still air 90° C/Watt $\theta_{\rm JA}$ Junction to Case 20° C/Watt

pulse and end of valid ADDRESS.

SWITCHING PARAMETERS MEASUREMENT INFORMATION

ENABLE and beginning of WRITE ENABLE pulse.

SIGNETICS PACKAGES

B PACKAGE

NOTES:

- 1. Lead Material: Alloy 42 or equivalent.
- 2. Body Material: Plastic.
- 3. Tolerances non cumulative.
- 4. Signetics symbol denotes Lead No. 1.
- 5. Lead spacing shall be measured within this zone.
- 6. Body dimensions do not include molding flash,
- 7. Thermal Resistance: Θ Ja = .16°C/mW, Θ Jc = .08°C/mW.
- 8. All dimensions shown in parentheses are English. (Inches)

FJ PACKAGE

NOTES:

- 1. Lead material: Alloy 42 or equivalent, tin plated.
- 2. Body material: Ceramic with glass seal.
- 3. Tolerances non cumulative.
- 4. Signetics symbol denotes Lead No. 1.
- 5. Lead spacing shall be measured within this zone.
- 6. Thermal resistance: Θ Ja = .090°C/mW, Θ Jc = .025°C/mW.
- All dimensions shown in parentheses are English. (Inches)

IJA PACKAGE

NOTES:

- 1. Lead material: Kovar or equivalent, tin plated.
- 2. Body material: Ceramic with Kovar or equivalent.
- 3. Lid material: Ceramic, glass seal.
- 4. Tolerances non cumulative.
- 5. Signetics symbol denotes Lead No. 1.
- 6. Lead spacing shall be measured within this zone.

Lid material: Kovar or equivalent, gold plated, alloy

seal.

Tolerances non cumulative.

Signetics symbol denotes Lead No. 1.

- Thermal resistance: (a) Ja = .080 °C/mW, (b) Jc = .020 °C/mW.
- 8. All dimensions shown in parentheses are English. (Inches)

INB PACKAGE LEAD NO. 1 [5] 47 15.49 (.610) 14.73 (.580) 31.24 (1.230) 30,23 (1.190) 1.78 (.070) 0.76 (.030) 12.95 (.510) 12.95 (.510) 12.19 (.480) 3.05 (.120) 2.03 (.080) 3.81 (.150) 2.79 2.29 (.110) (.090) 4 15.74 (.620) 14.99 (.590) 1.65 (.065) 0.76 (.030) 1.52 (.060) NOTES: 1. Lead material: Kovar or equivalent, gold plated. 6. Lead spacing shall be measured within this zone. 7. Thermal resistance: Θ Ja = .050°C/mW, Θ Jc = 2. Body material: Ceramic with Kovar or equivalent.

.015 C/mW.

(Inches)

All dimensions shown in parentheses are English.

- 1. Lead material: Kovar or equivalent, tin plated.
- 2. Body material: Ceramic with Kovar or equivalent.
- 3. Lid material: Ceramic, glass seal.
- 4. Tolerances non cumulative.
- 5. Signetics symbol denotes Lead No. 1.
- 6. Lead spacing shall be measured within this zone.
- 7. Thermal resistance: Θ Ja = .050°C/mW, Θ Jc = .010"C/mW.
- All dimensions shown in parentheses are English, (Inches)

NOTES:

- 1. Lead Material: Alloy 42 or equivalent.
- 2. Body Material: Plastic
- 3. Tolerances non cumulative.
- 4. Signetics symbol denotes Lead No. 1.
- 5. Lead spacing shall be measured within this zone.
- 6. Body dimensions do not include molding flash.
- 7. Thermal Resistance: Θ Ja = .12°C/mW, Θ Jc = .05°C/mW.
- 8. All dimensions shown in parentheses are English. (Inches)