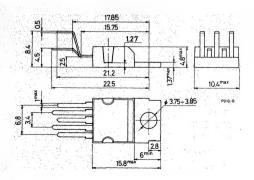
LINEAR INTEGRATED CIRCUITS

POSITIVE VOLTAGE REGULATORS WITH RECTIFYING BRIDGE

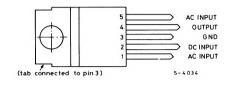
- OUTPUT VOLTAGE: 5V, 12V AND 15V
- OUTPUT CURRENT UP TO 500 mA
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION
- OVERVOLTAGE PROTECTION (60V 10 ms)

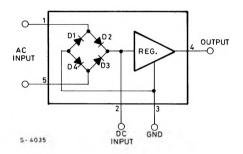

The L194-5, L194-12 and L194-15 are fixed voltage regulators assembled in Pentawatt[®] package. They incorporate a rectifying diode bridge with 7A surge current capability.

ABSOLUTE MAXIMUM RATINGS

Vi	Peak input voltage (10ms)	60	V
V.	DC input voltage (at pin 2)	40	v
Vi	AC input voltage (rms)	28	v
V _R	Peak reverse voltage across each diode	80	v
l _D	Input diode repetitive current	2	Α
IDS	Input diode surge current (10 ms)	7	Α
I.	Output current	Internally limited	
P _{tot}	Power dissipation	Internally limited	
T _{stg}	Storage temperature	-65 to + 150	°C
Ti	Operating junction temperature	-25 to + 150	°C

MECHANICAL DATA


Dimensions in mm



CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

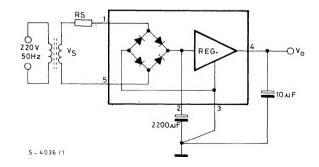
THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	50	°C/W

ELECTRICAL CHARACTERISTICS $(T_j = 25^{\circ}C)$

Parameter		Test conditions		Min.	Тур.	Max.	Unit
ld	Quiescent drain current	I ₀ = 0	V _i (pin 2) = 28V		5	14	mA
vo	Output voltage	l _o = 100 mA	V _i = 15V (L194-5) V _i = 22V (L194-12) V _i = 25V (L194-15)	4.75 11.4 14.25	5 12 15	5.25 12.6 15.75	v
۵Vo	Line Regulation	l _o = 100 mA	$V_i = 8 \text{ to } 18V (L194-5)$ $V_i = 15 \text{ to } 25V (L194-12)$ $V_i = 18 \text{ to } 28V (L194-15)$		5 10 15		mV

Parameter		Test conditions		Min.	Тур.	Max.	Unit
∆V₀ V₀	Load Regulation	l _o = 10 to 250 mA	V _i = 15V (L194-5) V _i = 22V (L194-12) V _i = 25V (L194-15)		1 1 1		%
V _{i-o}	Dropout voltage (pin 2-4)	l _o = 300 mA			2	3	V
ΔV ₀ ΔΤ	Output voltage drift	l _o = 100 mA	V _i = 15V (L194-5) V _i = 22V (L194-12) V _i = 25V (L194-15)		0.3 0.6 0.8		mV/° C
I _o	Output current	$\frac{\Delta V_o}{V_o} \le 1\%$	L194-5/12 L194-15 (*)	500 300			mA
I _{sc}	Short-circuit current		V _i = 15V (L194-5) V _i = 22V (L194-12) V _i = 25V (L194-15)		700 500 400		mA
۱ _p	Peak output current			0.7		1.4	Α
SVR	Supply voltage Rejection	f = 100 Hz I _o = 200 mA ∆V _i = 10V	L194-5/12 L194-15		46 40		dB
Ro	Output Resistance	f = 1 kHz	l _o = 100 mA		80	1	mΩ
Vd	Diode Forward Voltage	I _f = 1A I _f = 5A			1.6 4.5		V


(*) See diagram of fig. 1.

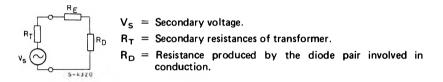
APPLICATION CIRCUIT

In the design of power supplies using the L194, it must be always verified that:

$$I_{\text{peak}} = \frac{\sqrt{2} V_{\text{s}}}{R_{\text{s}}} < 7A$$

where R_s is the sum of the transformer resistance, the equivalent diode resistance and external resistors.

L194-5 L194-12 L194-15

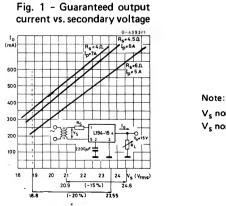

APPLICATION INFORMATION

The Absolute Maximum Ratings guarantee a max of 40V at pin 2 with max peak current of 7A in the rectifying diodes.

To avoid to damage the device, a suitable transformer secondary must be used so that even when there are network variations the limits set are always respected during operation.

For example, with a nominal voltage of 24 V_{rms} the maximum variations due to the transformer tolerance are ± 20%.

In order to limit (to the maximum value allowed) the current peak, which occurs in diodes during switch-on, an external resistance R_E, in series with the secondary of the transformer, must be introduced. Supposing that the capacitor of the filter is discharged at switch-on, the following equivalent circuit can be drawn:



If values R_T and R_D are known R_E is calculated in such a way that the peak current at switch-on does not exceed 7A.

$$R_{E} \ge \frac{V_{S peak} - 7 (R_{T} + R_{D})}{7}$$

For the 5V, with the nominal voltage of the 10VA transformer at 12V and with a total voltage variation of ±15%, the transformer secondary is connected directly to pins 1 and 5.

For correct use of the device at 15V the graph in fig. 1 gives the max output current.

Vs nom = 24.6 Vrms for 220V ± 15%. Vs nom = 23.55 Vrms for 220V ± 20%.