

Overview

The LB8112V integrates a driver for a video cassette deck loading motor and the associated peripheral sensor amplifiers in a single chip. The LB8112V can implement circuits with low saturation voltages and low power levels since it can directly drive power transistors from the V_M power supply.

Functions and Features

- Built-in output current control and detection circuits for the loading motor
- Two reel motor FG amplifiers
- Two top-end sensors
- Two buffer amplifiers and an overcurrent protection circuit
- Thermal shutdown

Specifications

Absolute Maximum Ratings at Ta = 25°C

Package Dimensions

unit: mm 3191-SSOP30

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1 max		7	V
Maximum supply voltage	V _{CC} 2 max		11	V
	V _M max		V _{CC} 2	V
Maximum output current	I _M max	Continuous, Pd < 0.5 W	600	mA
Input voltage	V _{IN}	· · · · · · · · · · · · · · · · · · ·	-0.3 to V _{CC} 1 +0.3	v
Allowable power dissipation	Pd max	Independent device, Tj = 150°C	0.5	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10. 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Allowable Operating Ranges at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply unitage	V _{CC} 1		2.7 to 4.0	V
Subbly Aouage	V _{CC} 2	V _{CC} 2 ≥ V _{CC} 1	2.7 to 9	V
V _M voltage	V _M		2.2 to V _{CC} 2	v

Electrical Characteristics at Ta = 25°C, $V_{CC}1$ = 3 V, $V_{CC}2$ = 4.75 V, V_M = 3.0 V

Parameter		Symbol	Conditions	nim	tvp	max	Unit
V _{CC} 1 current drain		lcc11	Slandby mode		2.3	4	mA
		loc12	Forward/reverse mode, LIMIT and EN = low		14	19	mA
		l _{cc} 13	Brake mode, LIMIT and EN = low		10	14	mA
	·		Standby mode (Voc1 = open)		0.1	20	μΑ
Vcc2 current drain		10022	Standby mode (Vcc1 = 3.0 V)		0.460	1	mA
		loc23	Forward/reverse mode		18.5	25	mA
V _M current drain		00	Standby mode		0.1	20	цА
Logic Inputs (the DEC1,	DEC2, LI	MIT. and EN	Dins)]	11			
Input high-level voltage	<u> </u>	VINI	$V_{cc1} = 2.7 \text{ to } 4.0$	2.0			v
High-level input current		1.61	V _{IN} = 3.0 V		46	65	<u>µА</u>
Input low-level voltage		Vinit	Voc1 = 2.7 to 4.0		·····	0.6	
Low-level input current			V _{IN} = 0.6 V	<u> </u>	4.6	10	цÂ
Logic Outputs (the LIMIT	OUT. TO	POUT, and E	NDOUT pins)]	·			
Output high-level voltage		Volittu	Voc1 = 2.7 to 4.0. source current: 10 uA	Vcc1-0.5			v
Output low-level voltage		Voim	V_{cc} = 2.7 to 4.0. sink current; 10 μ A		······	0.4	- v
[Loading Motor Driver]		UUIL		<u>ا محمد معمد المحمد المحمد</u>		I	
		V _(sal) 1	In = 200 mA (vertical addition)		0.2	0.3	V
Output saturation voltage		V(cat)2	Io = 400 mA (vertical addition)		0.4	0.6	v
Limit current		<u>limi</u>	$V_{BS} = 200 \text{ mV}, R_{E} = 1.0 \Omega, R_{I} = 7.5 \Omega$	172	192	212	mA
Detection current						400	mA
Limit current setting rang	e		$V_{BS} = 0.1$ to 0.3 V, $R_F = 0.5 \Omega$, $R_I = 4.7 \Omega$, $V_{AI} = 4.6 V$	100		600	mA
[Reel FG Amplifier]							
Input offset voltage		Vin			±1	±5	mA
Inout bias current		VB	V _{IN} = 0.3 V			250	nA
Common-mode input volt	age	<u> </u>		· · · ·			
range		VICM		1		2	v
Open-loop gain		Gv1	•		55		d8
Loop gain		G _V 2		27	29	30.5	dB
Common-mode rejection	ratio	C _{MR}	*	65	80		dB
Source output saturation	voltage	Vou	I _O = -40 μA		0.1	0.25	۷
Sink output saturation vo	tage	VOD	i _O = 40 μA		0.1	0.25	V
[LPF Bulfer]			······································		· · · · · · · · · · · · · · · · · · ·		
Input offset		V _{IO}			±1	±7	۳V
Input bias current		l _B	V _{IN} = 0 V			250	nA
Common-mode input volt range	age	VICM		0		V _{CC} 2 1.5	v
Open loop gain		G _V 1	•		55		dB
Common-mode rejection ratio		C _{MR}	*	65	80		dB
Output voltage range		Vour1		0		V _{CC} 2 - 1.5	V
	Source	Iso	V ₀ = 0 V	10			mΑ
Output current	Cint	I _{SI} 1	V _O = 1.0 V	1			mA
	500K	I _{SI} 2	V _O = 0.2 V	18	36	45	μA
Bandwidth			•		1		MHz
[LPF Buffer Limiter]							
Input offset		VIO			±1	±7	۳V
Input bias	<u> </u>	I _B	V _{IN} = 0.2 V			250	nA
Common-mode input voltage range		V _{ICM}		0		V _{CC} 1 - 1.5	v

Note: * Items marked with an asterisk are design target values and are not tested.

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
[TOP/END sensor]						
Input resistance	R _{IN}	•	4	5	6	kΩ
Minimum Input sensitivity	Δ٧		±27	±35	±43	mV
Thermal shutdown operating temperature	T _{TSD}	*	150	180	210	°C
Thermal shutdown hysteresis	ΔT _{TSD}	•		15		°C

Note: * Items marked with an asterisk are design target values and are not tested.

Truth Tables

1. Loading motor truth table

Input		Output		Mada	
DEC1	DEC2	OUT1	OUT2	IMODE	
L	L	off	off	Standby	
Н	L	н	L	Forward	
L	н	L	н	Reverse	
Н	н	L	L	Brake	

2. Loading motor current limiter detection modes

.

LIMIT EN	OUT output	LIMITOUT
	LIMIT	L
п	NONLIMIT	н
L	Saturation	н

Pin Assignment

Pin Functions

Pin No.	Symbol	Pin voltage	Equivalent circuit	Function
1	Rf			 P-ground for the output transistor The output current is detected by a resistor inserted between the Rf pin and ground for motor current control.
2 ` 29	OUT1 OUT2	0 to V _M	VM 2 2 7 7 2 9 7 7 1 405407	 Outputs Connect these pins to the motor.
3	V _{CC} 1	2.7 to 4.0 V		 Power supply for circuit other than the loading output block and the LPF buffer This power supply must be stabilized so that noise does not enter at this pin.
4	V _{CC} 2	2.7 to 9 V		 Power supply for the loading motor pre-driver and LPF buffer. As is the case for V_{CC}1, this power supply must be stabilized so that noise does not enter at this pin.
5	V _M	2.2 to V _{CC} 2		 Loading motor power supply As is the case for V_{CC}2, this power supply must be stabilized so that noise does not enter at this pin.
6 8	B _{IN} 1 B _{IN} 2			 LPF buffer input This pin is used to form a low-pass filter as shown in a the peripheral circuit example.
7 9	Bout1 Bout2			 LPF buffer output Outputs a voltage identical to that applied to the buffer IN pin.

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Function
10 11	isnf Rfb		10 10 10 10 50k a 200 a W W W W AD5410	 ISNF is the connection for the limiter oscillation prevention capacitor. RBF is the LPF current limiter current detection pin.
12	RSB		vcc1 v vcc1 vcc1	RSB is used to set the LPF limiter. The RSB pin voltage is determined by external circuits.
13 16	TOP _{IN} END _{IN}		Vсс1 5ka 2000 5ka 2000 13(15) лоб412	 Sense amplifier input block Internal resistance: 5 kΩ The output is inverted if a pulse in excess of ±35 mV is input to the IN pin.
15	GND			Ground that is common to P-GND and SGND.
14 17	TOP _{OUT} END _{OUT}	0 to V _{CC} 1	VCC1 VCC1 (14) (17) WCC1 (17) WCC1 (17) A05413	The top and end sensor outputs.
18 19 21 22	ALM1 RLP1 RLM2 RLP2		18 10k 2 10k 2	 The L-FG amplifier inputs RLM1 and RLM2 are negative inputs. RLP1 and RLP2 are positive inputs.

Continued on next page.

....

.

Continued from preceding page.

•

ĩ

Pin No.	Symbol	Pin voltage	Equivalent circuit	Function
20 23	RLO1 RLO2	0 to V _{CC} 1	200 × 0 300 × 0 777 777 777 777 777 777 7777 7777 77	The R-FG amplifier outputs
24 25	DEC1 DEC2	0 to V _{CC} 1	VCC1 10ka	Loading motor inputs When V _{CC} 1 = 3.0 V: 2.0 V or higher is high, and 0.6 V or lower is low.
26	LIMIT EN	0 to V _{CC} 1	VCC1 50kΩ B0kΩ 777 777 777 4054177	Current limiter on/off control When V _{CC} 1 = 3.0 V, if this pin is: 2.0 V or higher: The current limiter will be on. 0.6 V or lower: The current limiter will be off.
· 27		0 to V _{CC} 1	27 	Current limiter detection output When V _{CC} 1 = 3:0 V, if this pin Is: 2.5 V or higher: The current limiter will be off. 0.4 V or lower: The current limiter will be on.
28	RS	0 ю V _{CC} 1 1.5 V		 Current limiter setting Sets the limit current by setting the voltage between the Rf pin and GND.
30	NC	· ·		Unused pin (Must be left open.)

Peripheral Circuit Example

Equivalent Circuit Block Diagram

- No products described or contained herein are intended for use in surgical Implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1996. Specifications and information herein are subject to change without notice.