Monolithic Digital IC



# LB8901M

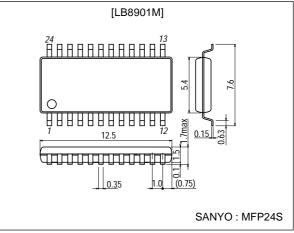
# **CCD Clock Driver**

## Overview

The LB8901M is a monolithic IC designed to drive largecapacity clock gates of a CCD image sensor (LC9900 series) at a high speed.

### Features

- Capable of driving large-capacity gates of a CCD, etc.
- On-chip eight-block driver, two of which are capable of providing drive on the three-value level (LC9900 series).
  No more than one chip is required to drive vertical gates.
- Placed in a 24-pin miniflat package (MFP24S), facilitating miniaturization of equipment.
- Capable of being driven direct with TTL, CMOS, etc.
- A power save circuit can be connected to permit less power dissipation.


## **Specifications**

#### Absolute Maximum Ratings at $Ta = 25^{\circ}C$

## **Package Dimensions**

## unit:mm

#### 3112A-MFP24S



| Parameter                   | Symbol              | Conditions               | Ratings       | Unit |
|-----------------------------|---------------------|--------------------------|---------------|------|
| Maximum supply voltage      | V <sub>CC</sub> max | Each V <sub>CC</sub> pin | -0.3 to +18.0 | V    |
| Input supply voltage        | VIN                 | Each input pin           | -0.3 to +6.0  | V    |
| Maximum output current      | IOUT                | Each output pin          | 250           | mA   |
| Allowable power dissipation | Pd max              |                          | 620           | mW   |
| Operating temperature       | Topr                |                          | -10 to +70    | °C   |
| Storage temperature         | Tstg                |                          | -40 to +125   | °C   |

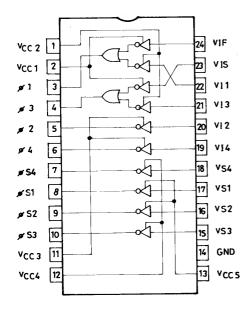
#### Allowable Operating Ranges at $Ta = 25^{\circ}C$

| Parameter                | Symbol              | Conditions                                             | Ratings      | Unit |
|--------------------------|---------------------|--------------------------------------------------------|--------------|------|
| Supply voltage           | VCC                 | Each V <sub>CC</sub> pin                               | 5 to 18      | V    |
| Supply voltage           | $\Delta V_{CC}$ 1-2 | V <sub>CC</sub> 1–V <sub>CC</sub> 2 voltage difference | 0 to 6.0     | V    |
| Input high-level voltage | $V_{H}$             | Each input pin                                         | 2.5 to 6.0   | V    |
| Input low-level voltage  | VIL                 | Each input pin                                         | -0.3 to +0.3 | V    |

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

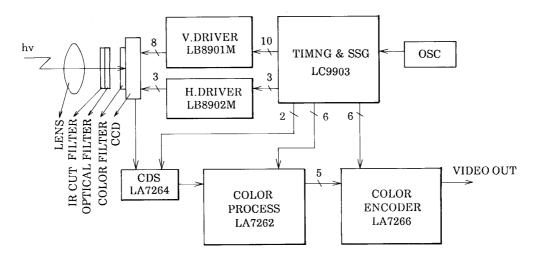
## **Electrical Characteristics** at Ta = 25°C, $V_{CC}$ 1=9.0V, $V_{CC}$ 2 to 5=13.0V


| Parameter                | Symbol                       | Symbol Conditions                                                               | Ratings               |     |     | Unit |
|--------------------------|------------------------------|---------------------------------------------------------------------------------|-----------------------|-----|-----|------|
| Parameter                | Symbol                       |                                                                                 | min                   | typ | max | Unit |
|                          | I <sub>IH</sub> 1            | VI1, VI3 inputs of blocks 1, 2, VIN=5.0V                                        |                       | 1.0 | 2   | mA   |
| Input high-level current | I <sub>IH</sub> 2            | VIF, VIS inputs of blocks 1, 2, VIN=5.0V                                        |                       | 1.0 | 2   | mA   |
|                          | I <sub>IH</sub> 3            | V <sub>I</sub> 2, V <sub>I</sub> 4 inputs of blocks 3, 4, V <sub>IN</sub> =5.0V |                       | 1.0 | 2   | mA   |
|                          | I <sub>IH</sub> 4            | $V_{S}$ 1 to 4 inputs of blocks 5 to 8, $V_{IN}$ =5.0V                          |                       | 1.0 | 2   | mA   |
| Input low-level current  | I <sub>IL</sub> 1            | $V_{I}1$ to 4, $V_{S}1$ to 4 inputs of blocks 1 to 8, $V_{IN}{=}0V$             | -30                   |     |     | μA   |
|                          | I <sub>IL</sub> 2            | $V_{IF}$ , $V_{IS}$ inputs of blocks 1, 2, $V_{IN}$ =0V                         | -100                  | -20 |     | μΑ   |
|                          | ICCH1                        | Each input ; V <sub>IN</sub> =5.0V                                              |                       | 0.5 | 1   | mA   |
|                          | ICCH <sup>2</sup>            | Each input ; V <sub>IN</sub> =5.0V                                              |                       | 4.0 | 8   | mA   |
|                          | ICCH3                        | Each input ; V <sub>IN</sub> =5.0V                                              |                       | 4.0 | 8   | mA   |
|                          | ICCH4                        | Each input ; V <sub>IN</sub> =5.0V                                              |                       | 4.0 | 8   | mA   |
| Supply current           | ICCH <sup>5</sup>            | Each input ; V <sub>IN</sub> =5.0V                                              |                       | 4.0 | 8   | mA   |
| Supply current           | I <sub>CCL</sub> 1           | Each input ; V <sub>IN</sub> =0V                                                |                       |     | 300 | μA   |
|                          | I <sub>CCL</sub> 2           | Each input ; V <sub>IN</sub> =0V                                                |                       |     | 100 | μA   |
|                          | I <sub>CCL</sub> 3           | Each input ; V <sub>IN</sub> =0V                                                |                       |     | 100 | μΑ   |
|                          | I <sub>CCL</sub> 4           | Each input ; V <sub>IN</sub> =0V                                                |                       |     | 100 | μΑ   |
|                          | I <sub>CCL</sub> 5           | Each input ; V <sub>IN</sub> =0V                                                |                       |     | 100 | μΑ   |
| Output voltage           | V <sub>OH</sub> 1            | V <sub>I</sub> 1=0V, V <sub>IF</sub> =5V                                        | V <sub>CC</sub> 2–2.0 |     |     | V    |
|                          | V <sub>OH</sub> 2            | VI1=0V, VIF=0V                                                                  | V <sub>CC</sub> 1–1.0 |     |     | V    |
|                          | V <sub>OH</sub> 3            | V <sub>I</sub> 3=0V, V <sub>IS</sub> =5V                                        | V <sub>CC</sub> 2–2.0 |     |     | V    |
|                          | V <sub>OH</sub> <sup>4</sup> | V <sub>I</sub> 3=5V, V <sub>IS</sub> =0V                                        | V <sub>CC</sub> 1–1.0 |     |     | V    |
|                          | V <sub>OH</sub> 5            | V <sub>1</sub> 2, V <sub>1</sub> 4=0V                                           | V <sub>CC</sub> 3–2.0 |     |     | V    |
|                          | V <sub>OH</sub> 6            | V <sub>S</sub> 3, V <sub>S</sub> 4=0V                                           | V <sub>CC</sub> 4–2.0 |     |     | V    |
|                          | V <sub>OH</sub> 7            | V <sub>S</sub> 1, V <sub>S</sub> 2=0V                                           | V <sub>CC</sub> 5–2.0 |     |     | V    |
|                          | V <sub>OL</sub>              | Each input V <sub>IN</sub> =5V                                                  |                       |     | 1.0 | V    |

### Switching Characteristics at Ta = 25°C, V<sub>CC</sub>1=9.0V, V<sub>CC</sub>2 to 5=13.0V, V<sub>IN</sub>=5.0V, t<sub>r</sub>, t<sub>f</sub>≤10ns

| Parameter                                           | Symbol             | Conditions                                                    | Ratings |     |     | Unit |
|-----------------------------------------------------|--------------------|---------------------------------------------------------------|---------|-----|-----|------|
| Parameter                                           | Symbol             |                                                               | min     | typ | max | Unit |
|                                                     | t <sub>PLH</sub> 1 | ø1, 3 outputs ; V <sub>IF</sub> , V <sub>IS</sub> =5.0V fixed |         | 30  |     | ns   |
| Propagation time low-level $\rightarrow$ high-level | tPLH <sup>2</sup>  | ø1, 3 outputs ; V <sub>I</sub> 1, V <sub>I</sub> 3=5.0V fixed |         | 2   |     | μs   |
|                                                     | tPLH3              | ø2, 4, øS1 to 4 outputs                                       |         | 30  |     | ns   |
|                                                     | t <sub>PHL</sub> 1 | ø1, 3 outputs ; V <sub>IF</sub> , V <sub>IS</sub> =5.0V fixed |         | 30  |     | ns   |
| Propagation time high-level $\rightarrow$ low-level | tPHL2              | ø1, 3 outputs ; V <sub>I</sub> 1, V <sub>I</sub> 3=5.0V fixed |         | 1   |     | μs   |
|                                                     | tPHL3              | ø2, 4, øS1 to 4 outputs                                       |         | 30  |     | ns   |
|                                                     | t <sub>r</sub> 1   | ø1, 3 outputs ; V <sub>IF</sub> , V <sub>IS</sub> =5.0V fixed |         | 30  |     | ns   |
| Transient rise time                                 | t <sub>r</sub> 2   | ø1, 3 outputs ; V <sub>I</sub> 1, V <sub>I</sub> 3=5.0V fixed |         | 6   |     | μs   |
|                                                     | t <sub>r</sub> 3   | ø2, 4, øS1 to 4 outputs                                       |         | 30  |     | ns   |
|                                                     | t <sub>f</sub> 1   | ø1, 3 outputs ; V <sub>IF</sub> , V <sub>IS</sub> =5.0V fixed |         | 30  |     | ns   |
| Transient fall time                                 | t <sub>f</sub> 2   | ø1, 3 outputs ; V <sub>I</sub> 1, V <sub>I</sub> 3=5.0V fixed |         | 300 |     | ns   |
|                                                     | t <sub>f</sub> 3   | ø2, 4, øS1 to 4 outputs                                       |         | 30  |     | ns   |

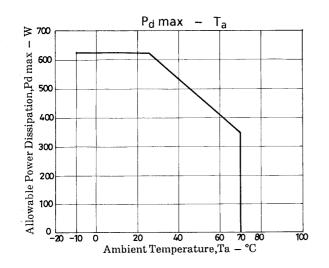
Note : Load conditions


#### **Equivalent Circuit Block Diagram**



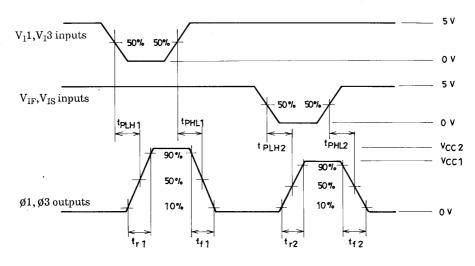
#### **Pin Function**

| Pin No.     Pin Name     Pin Description       1     V <sub>CC</sub> 2     Power supply for frame shift pulse at ø1, 3       2     V <sub>CC</sub> 1     Power supply for three-value pulse at ø1, 3       3     ø1     Positive three-value drive output, for ø1 of CCI       4     ø2     Positive three-value drive output, for ø3 of CCI       5     ø3     Positive two-value drive output, for ø2 of CCD       6     ø4     Positive two-value drive output, for ø4 of CCD |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2     V <sub>CC</sub> 1     Power supply for three-value pulse at ø1, 3       3     ø1     Positive three-value drive output, for ø1 of CCI       4     ø2     Positive three-value drive output, for ø3 of CCI       5     ø3     Positive two-value drive output, for ø2 of CCD                                                                                                                                                                                                |   |
| 3     Ø1     Positive three-value drive output, for Ø1 of CCI       4     Ø2     Positive three-value drive output, for Ø3 of CCI       5     Ø3     Positive two-value drive output, for Ø2 of CCD                                                                                                                                                                                                                                                                              |   |
| 4ø2Positive three-value drive output, for ø3 of CCI5ø3Positive two-value drive output, for ø2 of CCD                                                                                                                                                                                                                                                                                                                                                                             |   |
| 5 ø3 Positive two-value drive output, for ø2 of CCD                                                                                                                                                                                                                                                                                                                                                                                                                              | D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 6 Ø4 Positive two-value drive output for Ø4 of CCD                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 7 ØS4 Positive two-value drive output, for ØS4 of CCE                                                                                                                                                                                                                                                                                                                                                                                                                            | ) |
| 8 ØS1 Positive two-value drive output, for ØS1 of CCE                                                                                                                                                                                                                                                                                                                                                                                                                            | C |
| 9 ØS2 Positive two-value drive output, for ØS2 of CCE                                                                                                                                                                                                                                                                                                                                                                                                                            | C |
| 10 ØS3 Positive two-value drive output, for ØS3 of CCE                                                                                                                                                                                                                                                                                                                                                                                                                           | C |
| 11 V <sub>CC</sub> 3 Power supply for ø2, 4                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 12 V <sub>CC</sub> 4 Power supply for øS3, S4                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 13 V <sub>CC</sub> 5 Power supply for øS1, S2                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 14 GND Ground pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 15 V <sub>S</sub> 3 Clock input for øS3 driver                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 16 V <sub>S</sub> 2 Clock input for øS2 driver                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 17 V <sub>S</sub> 1 Clock input for øS1 driver                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 18 V <sub>S</sub> 4 Clock input for øS4 driver                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 19 V <sub>I</sub> 4 Clock input for ø4 driver                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 20 V <sub>1</sub> 2 Clock input for ø2 driver                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 21 V <sub>1</sub> 3 Clock input for ø3 driver                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 22 V <sub>1</sub> 1 Clock input for ø1 driver                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 23 V <sub>IS</sub> Three-value pulse input for ø3 driver                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 24 VIF Three-value pulse input for ø1 driver                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |


#### Sample Application Circuit : Camera Block Diagram



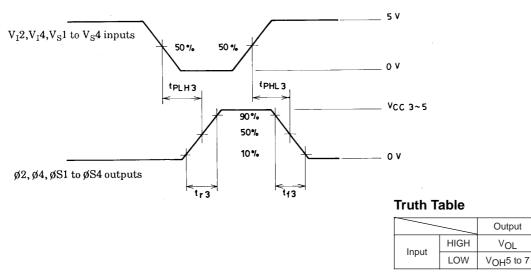
#### Proper Cares to be Taken in Designing a Printed Circuit Board


The LB8901M draws a large instantaneous current when it drives a load. The LB8901M is also designed to drive a load at a very high speed. When designing a printed circuit board, keep in mind the following points to prevent the output waveforms from being adversely affected.

- 1) Make the pattern of the power supply, GND lines as large as possible.
- 2) Place the bypass capacitor as close to the IC as possible (less than 1cm).
- 3) Make the wiring of the input signal line as short as possible to minimize the effect of stray capacitance.
- 4) Make the wiring of the output signal line also as short as possible, because the inductance of a long signal line may affect the output waveforms adversely.
- Take such necessary measures that a small resistance is inserted in series with a load.
- 5) When using a power save circuit, place it also as close to the IC as possible.



#### **Switching Waveforms**


1) Blocks 1, 2



**Truth Table** 

| $\sim$                                      |      | VIF, VIS inputs      |                      |  |
|---------------------------------------------|------|----------------------|----------------------|--|
|                                             |      | HIGH                 | LOW                  |  |
| V <sub>I</sub> 1, V <sub>I</sub> 3<br>Input | HIGH | VOL                  | V <sub>OH</sub> 2, 4 |  |
| İnput                                       | LOW  | V <sub>OH</sub> 1, 3 | Inhibit              |  |

2) Blocks 3 to 8



- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2001. Specifications and information herein are subject to change without notice.