1.2V TO 37V ADJUSTABLE VOLTAGE REGULATOR

OUTPUT VOLTAGE RANGE : 1.2 TO 37V

- . OUTPUT CURRENT IN EXCESS OF 1 5A
- 0.1% LINE AND LOAD REGULATION
- FLOATING OPERATION FOR HIGH VOL-TAGES
- © COMPLETE SERIES OF PROTECTIONS : CURRENT LIMITING, THERMAL SHUTDOWN AND SOA CONTROL

DESCRIPTION

The LM117/LM217/LM317 are monolithic integraled circuit in TO-220 and TO-3 packages intended or use as positive adjustable voltage regulators.

They are designed to supply more than 1.5A of load current with an output voltage adjustable over a 1.2 to 37V range.

The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

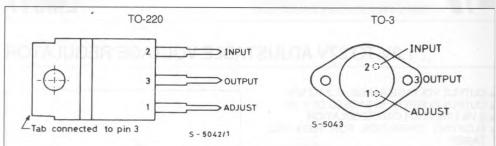
ABSOLUTE MAXIMUM RATINGS

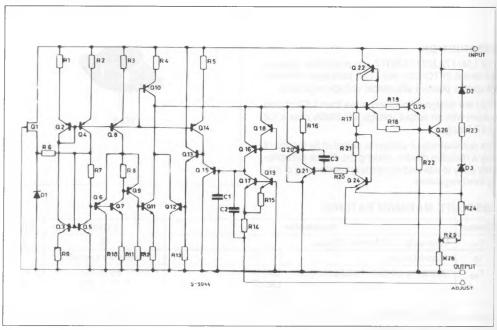
Symbol	Parameter	Yalue	Unit	
V _{i-0}	Input-output Differential Voltage	40	V	
10	Output Gurrent	Internally Limited		
Top	Operating Junction Temperature for : LM117 LM217 LM317	- 55 to 150 - 25 to 150 0 te 125	0^ ⊃° ⊙∘	
Pist	noiteqizaiD rowo9	Internally limited		
Tato	Storage Temperature	- 65 to 150	ο°C	

THERMAL DATA

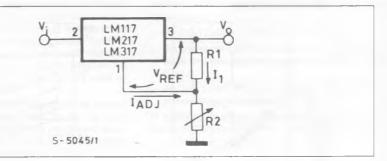
			TO-3	TO-220	
R _{th j-case}	Thermal Resistance Junction-case	Max	4	4	°C/W
Rin (-amb	Thermal Resistance Junction-ambient	Max	36	50	°CW

LM117/217 LM317




LM117/LM217/LM317

PIN CONNECTION


Туре	TO-220	TO-3
LM117		LM117K
LM217	LM217T	LM217K
LM317	LM317T	LM317K

SCHEMATIC DIAGRAM

Eas c adjustable regulator.

ELECTRICAL CHARACTERISTICS (V_i-V_o = 5V, I_o = 500mA, unless otherwise specified)

Sembol					LM117/LM217			LM317		
	Parameter	Test Conditions		Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
	Line Regulation	$V_{1}-V_{0} = 3 \text{ to } 40$	V T ₁ = 25°C		0.01	0.02		0.01	0.04	%N
					0.02	0.05		0.02	0.07	
٥٨٦	Load Regulation	$V_o \le 5V$ $I_o = 10mA$ to 1.5A	T ₁ = 25°C		5	15		5	25	mV
			5A		20	50		20	70	
		$V_o \ge 5V$ $I_o = 10mA$ to 1.5A	T ₁ = 25°C		0.1	0.3		0.1	0.5	%
			5A		0.3	1		0.3	1.5	
I _{ADJ}	Adjustment Pin Current				50	100		50	100	μA
SIADJ	Adjustment Pin Current	$V_1 - V_0 = 2.5 \text{ to } 40V$ $I_0 = 10\text{mA to } 1.5\text{A}$			0.2	5		0.2	5	μA
VREF	Reference Voltage (between pin 3 and pin 1)	$V_{1}-V_{0} = 3 \text{ to } 40V$ $I_{0} = 10\text{mA to } 1.5\text{A}$		1.2	1.25	1.3	1.2	1.25	1.3	V
V _o V _o	Output Voltage Temperature Stability				1			1		%
a min	Minimum Load Current	$V_i V_o = 40V$			3.5	5		3.5	10	mA
a max	Maximum Load	$V_{1} V_{0} < 15V$ $V_{1} V_{0} = 40V$		1.5	2.2		1.5	2.2		A
	Current				0.4			0.4		
9/1	Output Noise (percentage of Y ₀)	T ₁ = 25°C, 10Hz to 10KHz			0.003			0.003		%
SVR	Supply Voltage		0 = LO		65			65		đB
	Rejection (")	ection (*) f - 120Hz CADLE	= 10μF	66	80		66	80		

CADJ is connected between pin 1 and ground to the specified the above spece, apply over the following conditions - LM 117 T, = - 55 to 150 C LM 217 T₁ - - 25 to 150 C ; LM 317 T₁ - 0 to 125 C

Figure 1 : Output Current vs. Input-output Differential Voltage.

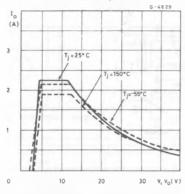
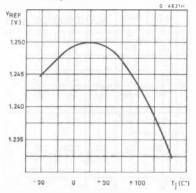



Figure 3 : Reference Voltage vs. Junction Temperature.

APPLICATION INFORMATION

The LM117/LM217/LM317 provides an internal reference voltage of 1.25V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see fig. 4), giving an output voltage Vo of :

$$V_{o} = V_{REF} \left(1 + \frac{R^{2}}{R^{1}} \right) + I_{ADJ} R^{2}$$

Figure 2 : Dropout Voltage vs. Junction Temperature.

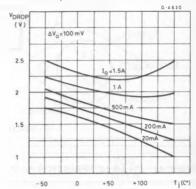
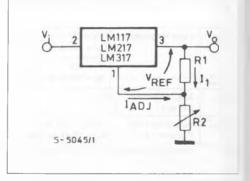



Figure 4 : Basic Adjustable Regulator.

The device was designed to minimize the term I_{AC} . (100µÅ max) and to maintain it very constant withine and load changes. Usually, the error term I_{ADJ} R_2 can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise.

Since the LM117/LM217/LM317 is a floating reguator and "sees" only the input-to-output differential obtage, supplies of very high voltage with respect or ground can be regulated as long as the maximum put-to-output differential is not exceeded. Furtherore, programmable regulator are easily obtainabe and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator.

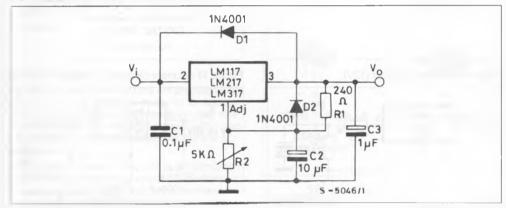

 order to optimise the load regulation, the current set resistor R1 (see fig. 4) should be tied as close as possible to the regulator, while the ground termiral of R2 should be near the ground of the load to provide remote ground sensing.

Figure 5 : Voltage Regulator with Protection Diodes.

No external capacitors are required, but performance may be improved with added capacitance as follows :

- An input bypass capacitor of 0.1µF
- An adjustment terminal to ground 10µF capacitor to improve the ripple rejection of about 15dB (C_{ADJ})
- An 1µF tantalum capacitor on the output to improve transient response.

In additional to external capacitors, it is good practice to add protection diodes, as shown in fig. 5.

D1 protects the device against input short circuit, while D2 protects against output short circuit for capacitors oscharging.

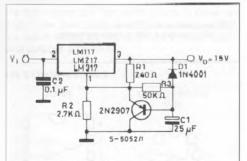
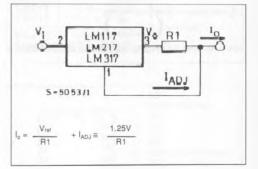



Figure 7 : Current Regulator.

LM117/LM217/LM317

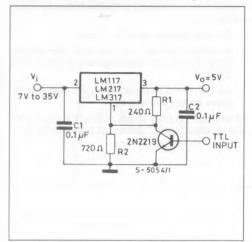


Figure 10 : Battery Charger (12V).

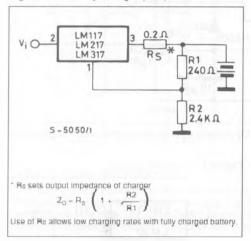
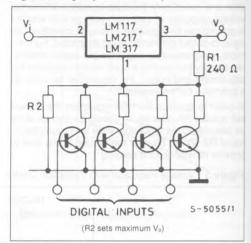
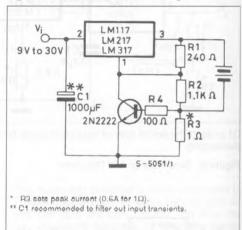




Figure 9 : Digitally Selected Outputs.

