LOW POWER QUAD OP AMP

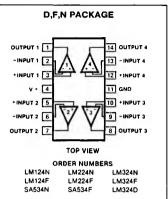
LM124/224/324/SA534

DESCRIPTION

The LM124/SA534 series consists of four independent, high gain, internally frequency compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages. Similar to LM2902.

UNIQUE FEATURES

In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.


The unity gain cross frequency is temperature compensated.

The input bias current is also temperature compensated.

FEATURES

- Internally frequency compensated for unity gain
- Large dc voltage gain—(100dB)
- Wide bandwidth (unity gain)—1MHz (temperature compensated)
- Wide power supply range Single supply—(3Vdc to 30Vdc) or dual supplies—(±1.5Vdc to ±15Vdc)
- Very low supply current drain essentially independent of supply volt-
- age (1mW/op amp at +5Vdc) • Low input biasing current—(45nAdc
- temperature compensated)
 Low input offset voltage—(2mVdc) and
- olfset current---(5nAdc) • Differential input voltage range equal to
- LM124 Mil std 883A,B,C available

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V+	Supply voltage	32 or ±16	Vdc
	Differential input voltage	32	Vdc
	Input voltage	-0.3 to +32	Vdc
	Power dissipation		
	N package	570 .	mW
	F package	· 900	mW
ļ	Output short-circuit to GND		
	1 amplifier ²	Continuous	
	$V+ < 15Vdc$ and $T_A = 25^{\circ}C$		
	Input current (V _{IN} < -0.3V) ³	50	mA
	Operating temperature range		
}	LM324	0 to +70	°C
	LM224	-25 to +85	°C
	SA534	-40 to +85	°C
	LM124	-55 to +125	°C
	Storage temperature range	-65 to +150	°C
	Lead temperature (soldering, 10sec)	300	°C

NOTES

For operating at high temperatures, all devices must be derated based on a +125°C
maximum junction temperature and a thermal resistance of 175°C/W which applies
for the device soldered in a printed circuit board, operating in a still air ambient.

LM 124/224 can be derated based on a +150°C maximum junction temperature.
 Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V+. At values of supply voltage in excess of +15Vdc continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.

The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the input lines.

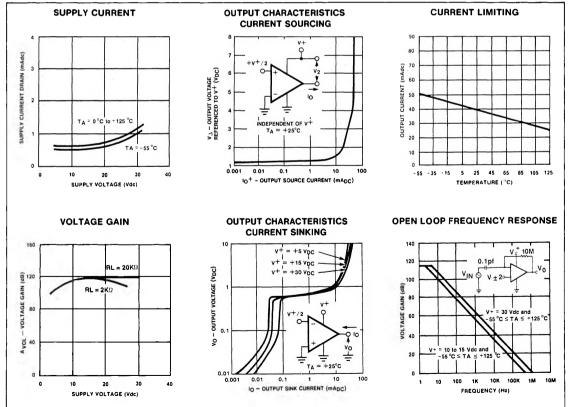
LOW POWER QUAD OP AMP

DC FLECTRICAL CHARACTERISTICS V + = 5V. $T_A = 25$ °C unless otherwise specified.

		TEST CONDITIONS	LM124/LM224			LM324/SA534			
	PARAMETER		Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage ¹	$R_s = 0\Omega$ $R_s = 0\Omega$, over temp.		±2	±5 ±7		± 2	±7 ±9	mV mV
Vos	Drift	$R_{S} = 0\Omega$		7			7		μV/°C
BIAS	Input current ²	l _{IN} (+) or l _{IN} (-) l _{IN} (+) or l _{IN} (-), over temp.		45 40	150 300		45 40	250 500	nA
I _B	Drift	Over temp.		50			50		pA/°C
los	Offset current	$I_{IN}(+) - I_{IN}(-)$ $I_{IN}(+0 - I_{IN}(-))$, over temp.		±3	± 30 ± 100		±5	± 50 ± 150	nA nA
l _{os}	Drift	Over temp.		10			10		pA/°C
V _{CM}	Common mode voltage range ³	V + = 30V V + = 30V, over temp.	0 0		V+-1.5 V+-2	0 0		V+-1.5 V+-2	v v
C _{MRR}	Common mode rejection ratio	V + = 30V	70	85		65	70		dB
V _{OUT}	Output voltage swing	$R_L = 2k\Omega, V + = +30V,$ over temp.	26			26			V
V _{он}		$R_{L} \leq 10k\Omega$, over temp.	27	28		27	28		V
Vol		$R_L \leq 10k\Omega$, V + = 5V, over temp.		5	20		5	20	mV
l _{cc}	Supply current	$\begin{aligned} R_{L} &= \infty, \ V_{CC} &= 30V, \ over \ temp. \\ R_{L} &= \infty, \ on \ all \ op \ amps, \\ over \ temp. \end{aligned}$		1.5 0.7	3 1.2		1.5 0.7	3 1.2	mA
A _{VOL}	Large signal voltage gain	$V + = +15V \text{ (for large } V_O \text{ swing)},$ $R_L \ge 2k\Omega$ $V + = +15V \text{ (for large } V_O \text{ swing)},$	50 25	100		25 15	100		V/mV
		$R_{L} \ge 2k\Omega$, over temp.	20			10			
	Amplifier-to-amplifier coupling ⁵	f = 1kHz to 20kHz, input referred		- 120			- 120		dB
PSRR		$R_{S} \leq 0\Omega$	65	100	1	65	100	1	dB
	Output current Source	V_{IN} + = +1Vdc, V_{IN} - =0Vdc, V + = 15Vdc	20	40		20	40		mA
		V + = 15Vdc $V_{IN} + = +1Vdc, V_{IN} + = 0Vdc,$ V + = 15Vdc, over temp.	10	20		10	20		mA
	Sink	$V_{IN} - = + 1Vdc, V_{IN} + = 0Vdc, V + = 15Vdc$	10	20		10	20	-	mA
		$V_{IN} = +1Vdc, V_{IN} + =0Vdc,$ V + = 15Vdc, over temp.	5	8		5	8		mA
		V_{IN} + = 0Vdc, V_{IN} - = + 1Vdc, V_O = 200mV	12	50		12	50	1	μA
I _{SC}	Short circuit current ⁴		10	40	60	10	40	60	mA
	Differential input voltage ⁶				V +			V +	V
GBW	Unity gain bandwidth	T _A = 25 °C		1	İ		1		MHz
S.R.	Slew rate	T _A = 25 °C		0.3			0.3		V/µs
Noise	Input noise voltage	$T_A = 25^{\circ}C, f = 1 \text{kHz}$		40			40		nV/√H

NOTES NOTES 1. Vo \geq 1.4Vdc, Re \equiv 02 with V + from 5V to 30V and over full input common mode range (0Vdc + to V + -1.5V). 2. The direction of the input current is out of the IC due to the pri input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V + -1.5, but either or both inputs can go to + 32V without damage. 4. Short circuits from the output to V + can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V + . At values of supply voltage in excess of + 15Vdc continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. 5. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitive increases at higher frequencies. 6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V + -1.5V, but either or both inputs can go to + 32Vdc without damage.

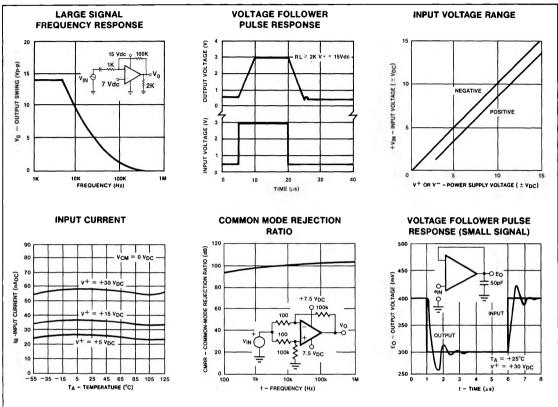
LINEAR LSI PRODUCTS


LOW POWER QUAD OP AMP

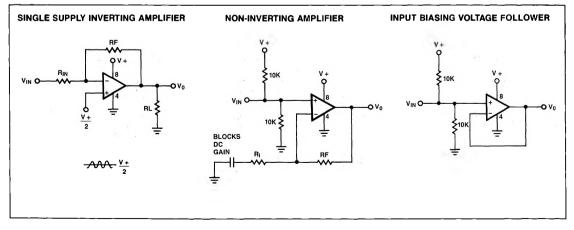
LM124/224/324/SA534

EQUIVALENT SCHEMATIC

TYPICAL PERFORMANCE CHARACTERISTICS



Signetics


LOW POWER QUAD OP AMP

LM124/224/324/SA534

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

TYPICAL APPLICATIONS

