National Semiconductor

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

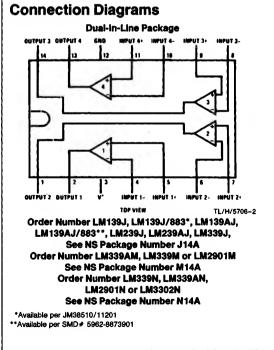
General Description

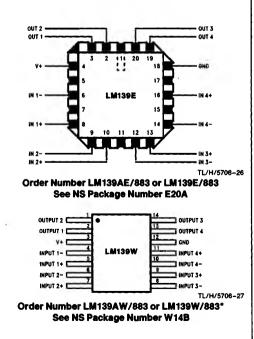
The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic— where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced V_{OS} drift over temperature

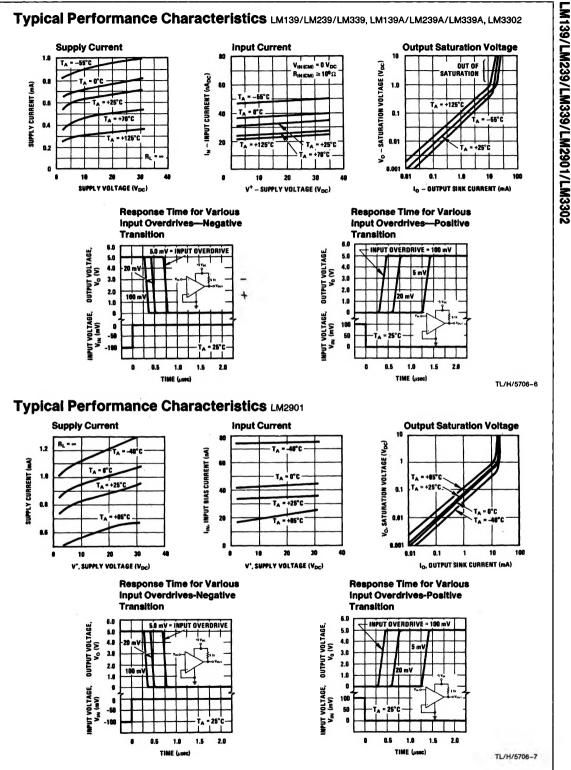

Allows sensing near GND
Compatible with all forms of logic


Eliminates need for dual supplies

- Compauble with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply voltage range LM139 series. 2 V_{DC} to 36 V_{DC} or ±1 VDC to ±18 VDC LM139A series, LM2901 2 VDC to 28 VDC LM3302 or $\pm 1 V_{DC}$ to $\pm 14 V_{DC}$ ■ Very low supply current drain (0.8 mA) - independent of supply voltage Low input biasing current 25 nA ±5 nA Low input offset current and offset voltage ±3 mV Input common-mode voltage range includes GND
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage 250 mV at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems



LM3302 28 V _{DC} or ±14 V _{DC}
-0.3 Vpc to +28 Vpc 50 mA
1050 mW
Continuous
- 69 C 10 + 190 C
$= 25^{\circ}$ C, unless otherwise stated)
LM139A
Min Typ Max
2.0
100
25
V+-1.5
2.0

LM139/LM239/LM339/LM2901/LM3302

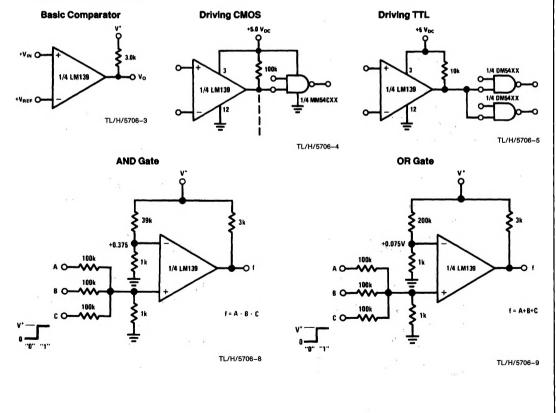
LM139/LM239/LM339/LM2901/LM3302

Darameter	Becommenter Conditions LM139A LM239A, LM339A LM1	LM139A	-	LM239/	LM239A, LM339A		LM139	_	LM239, LM339	4339	LMS	LM2901		LM3302		Inite
		Min Typ	Max	Min	Typ Ma	Max Min	Typ	Max Min	n Typ	Max	Min Typ	/p Max	X	Typ	Max	
Saturation Voltage	$V_{IN(-)} = 1 V_{DC}, V_{IN(+)} = 0,$ Isink $\leq 4 \text{ mA}$	250	400			400		400	250	400	R	250 400	0	250	200	mVbc
Output Leakage Current	$V_{IN(+)} = 1 V_{DC} V_{IN(-)} = 0,$ $V_{O} = 5 V_{DC}$	0.1			0.1		0.1		0.1		ō	0.1		0.1		nApc
Electrical C	Electrical Characteristics (V+	= 5.0 V _{DC} , Note 4)	lote 4)						•.							
	Canditione		LM	LM139A	LM239A,	LM239A, LM339A		LM139	LM23	LM239, LM339	<u> </u>	LM2901	-	LM3302	302	I Inite
			Min Typ	Max	Min Typ	o Max	Min Typ	Max	Min Typ	p Max	Min Typ		Max M	Min Typ	Max	2
Input Offset Voltage	(Note 9)			4.0		4.0		9.0		9.0		6	15		40	mVpc
Input Offset Current	$l_{lN(+)} - l_{lN(-)}$, VCM = 0V			100		150		100		150		50 2	200		300	nApc
Input Bias Current	$l_{IN(+)}$ or $l_{IN(-)}$ with Output in Linear Range, $V_{CM} = 0V$ (Note 5)	ut in (Note 5)		300		400		300		400		200 5	500		1000	nA _{DC}
Input Common-Mode Voltage Range	$V^+ = 30 V_{DC}$ (LM3 (Note 6)	(302, V + = 28 V _{DC})	0	V+-2.0	0	V+-2.0	0	V+-2.0	0	V+-2.0	0 0	+>	V+-2.0	0	V+-2.0	VDC
Saturation Voltage	V _{IN} (−) = 1 V _{DC} , V _{IN} (+)=0, I _{SINK} ≤4 mA	0,		700		700		700		700		400 7	700		700	mVpc
Output Leakage Curre	Output Leakage Current $V_{IN(+)=1} V_{DC}, V_{IN(-)=0}, V_{O=30} V_{DC}, V_{O=28} V_{DC}$	0, 0=28 V _{DC})		1.0		1.0		1.0		1.0		-	1.0		1.0	MADC
Differential Input Volts	Differential Input Voltage Keep all V _{IN} 's≥0 V _{DC} (or V if used), (Note 8)	· ^-,		36		36		. 36		36			36		28	VDC
Note 1: For operating at printed circuit board, op dissipation very small (P	Note 1: For operating at high temperatures, the LM339/LM339A, LM2901, LM330Z must be device soldered in a printed circuit board, operating at high temperatures of 95°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be device soldered in a field are printed circuit board, operating in a still air ambient. The LM239 and LM139 must be device soldered in a field are printed circuit board, operating in a still air ambient. The LM239 and LM139 must be device soldered in a field are printed circuit board, operating in a still air ambient. The LM239 and LM139 must be device soldered in a field solve the output sheaps the chip dissipation and the "ON-OFF" characteristic of the output sheaps the chip dissipation are solved the output sheaps and LM139 must be device solved on a 150°C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the output sheaps and business are allowed to saturate.	39A, LM2901, LM 39 and LM139 m ansistors are allo sive heating and	A3302 mus ust be dera wed to satu	it be derated ted based on urate.	based on a 1 a 150°C max	25°C maxim kimum juncti no short circ	um junction on temperat	temperature ure. The low	e and a the bias dissip	mal resista ation and th	nce of 95°(he "ON-OF	C/W which F" charao	teristic of	for the dev f the output	ice soldere s keeps the	dina echip 4∨+
Note 2: This input current Note 3: This input curre clamps. In addition to thi overdrive) for the time di Note 4: These specifical	Note 2. This input current reproduction the control and the input leads is driven negative. It is due to the control reproduction the input PNP transitors becoming forward biased and threnky acting as input dide clamps. In addition to this due to the control reproduction to the control reproduction to the control reproduction of the input dide clamps. In addition to this did oction, there is also lateral transitors becoming forward biased and threnky acting as input dide clamps. In addition to that did oction, there is also lateral transitors becoming forward biased and threnky acting as input dide clamps. In addition to that did oction, there is also lateral transitors action can cause the output voltage of the comparators to go to the V ⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V _{DC} (at 25°)C. Note: 4.1.25°C. T _A > H8°C, the LM39A LM33AA temperature specifications are immated to -25°C ST _A > H8°C, the LM39A LM33AA temperature specifications are immated to -25°C ST _A > H8°C, the LM39A LM30A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8°C, the LM39A temperature specifications are immediated to -25°C ST _A > H8	is any of the input PN parasitic tran 6. This is not des 25°C, for the LM1	leads is dri sistor action structive an 39/LM139/	iven negative in on the IC cl d normal out A. With the Ll	. It is due to ip. This trans put states wil M239/LM239	the collector sistor action I re-establish A, all tempe	r-base juncti can cause th h when the i trature speci	on of the inj ne output vo nput voltage fications are	put PNP tra htages of th , which was	e compara be e compara be e compara be e compara be e compara be e compara be	coming for coming for tors to go th again return ≤ + 85°C, t	ward biase of the V + V ins to a val	of and th voltage le lue greate	ereby actir wel (or to g er than -0 A temperatu	g as input ound for a 3 VDC (at 2 ire specific	diode large 25°)C. ations
Note 5: The direction of Note 5: The input comm to +30 V _{DC} without dar	are mined to Constant the current is out to the Challer of the Challer of the output solution of the autour son localing change axists on the reference or input lines. Note 5: The direction of the input comment is out to the Challer of the Rage. This current is essentially constant, independent of the state of the output so no localing change axists on the reference or input lines.	e to the PNP inp la voltage should i t of the magnitud	ut stage. Ti not be allow be of V+.	his current is ved to go neg	essentially c lative by more	onstant, ind e than 0.3V.	ependent of The upper ei	the state of rd of the cor	f the outpu mmon-mod	so no loac e voltage ra	ling change Inge is V +	exists or -1.5V at 2	the refe	rrence or in either or bo	put lines. oth inputs c	ango
Note 7: The response t Note 8: Positive excursi must not be less than - Note 9: At output switch Note 10: Refer to RETS	Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section. Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 Vpc (or 0.3 Vpc below the magnitude of the negative power supply, if used) (at 25°C). Mote 8: At output switch point, Vo=1.4 Vpc, Rs =0.0 mith V+ from 5 Vpc to 30 Vpc and over the full input common-mode range (0 Vpc to V ⁺ -1.5 Vpc), at 25°C. For LM3302, V ⁺ from 5 Vpc to 28 Vpc. Note 9: At output switch point, Vo=1.4 Vpc, Rs =0.0 mith V+ from 5 Vpc. to 30 Vpc: and over the full input common-mode range (0 Vpc to V ⁺ -1.5 Vpc), at 25°C. For LM3302, V ⁺ from 5 Vpc.	put step with 5 mV overdrive. For larger overdrive signals 300 ns cased the power supply level. As long as the other voltage remains the magnitude of the negative power supply, if used) (at 25°C). 303 with V + from 5 UpC to 30 VDC; and over the full input commor specifications and to RETS193X for LM139 military specifications.	trive. For la vel. As long jative powe o 30 V _{DC} ; ¢ TS139X for	urger overdriv g as the other or supply, if u and over the - LM139 mility	e signals 300 r voltage rem sed) (at 25°C full input con ary specificat) ns can be lains within t). nmon-mode ions.	obtained, se the common range (0 V _D	e typical pe mode rang c to V ⁺ -	rformance a, the comp 1.5 V _{DC}), a	characteris arator will 25°C. For	tics section provide a p LM3302, V	roper outr + from 5	V _{DC} to 2	The low in 8 V _{DC} .	out voltage	state

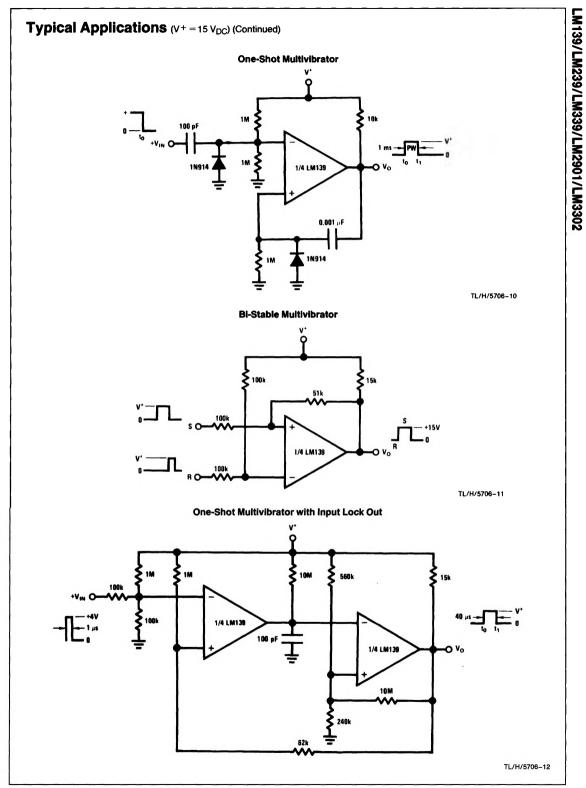
Application Hints

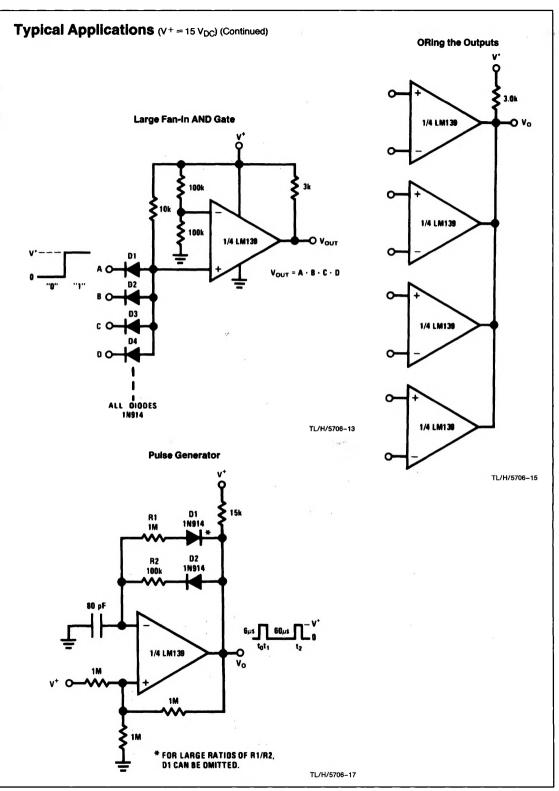
The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing this input resistors to < 10 k Ω reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

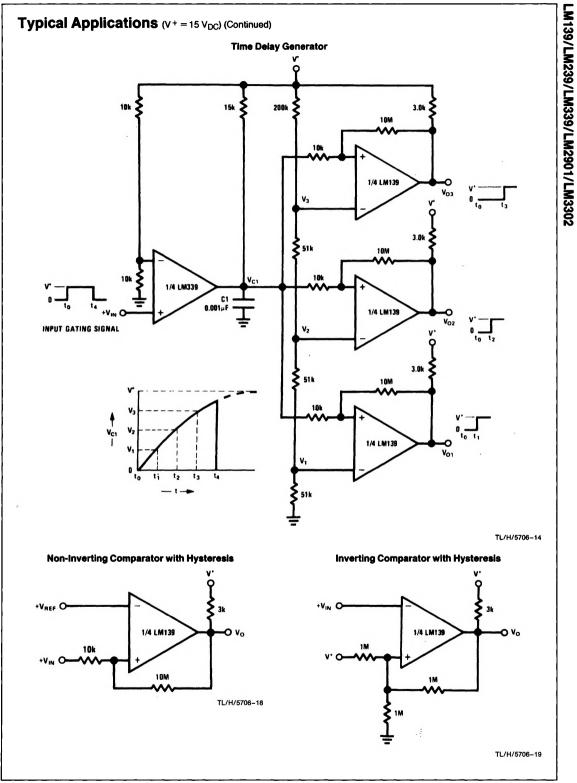
All pins of any unused comparators should be grounded.

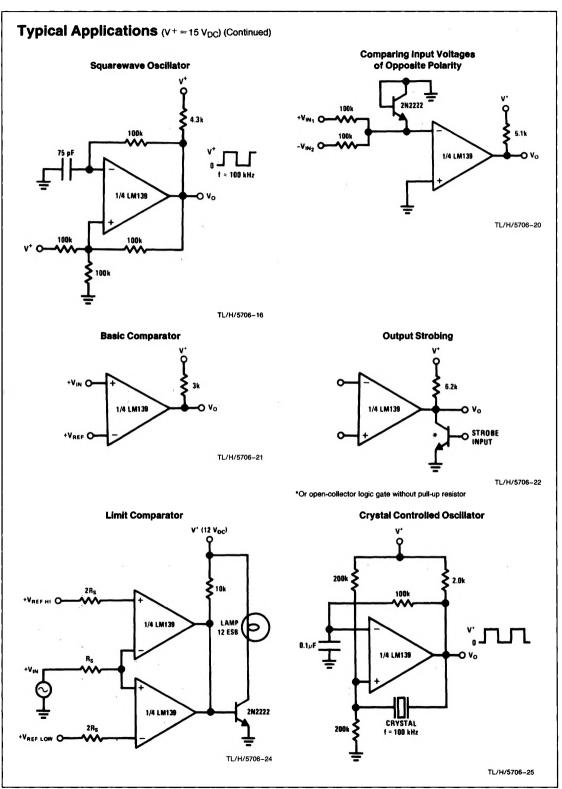

The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 V_{DC} to 30 V_{DC} .

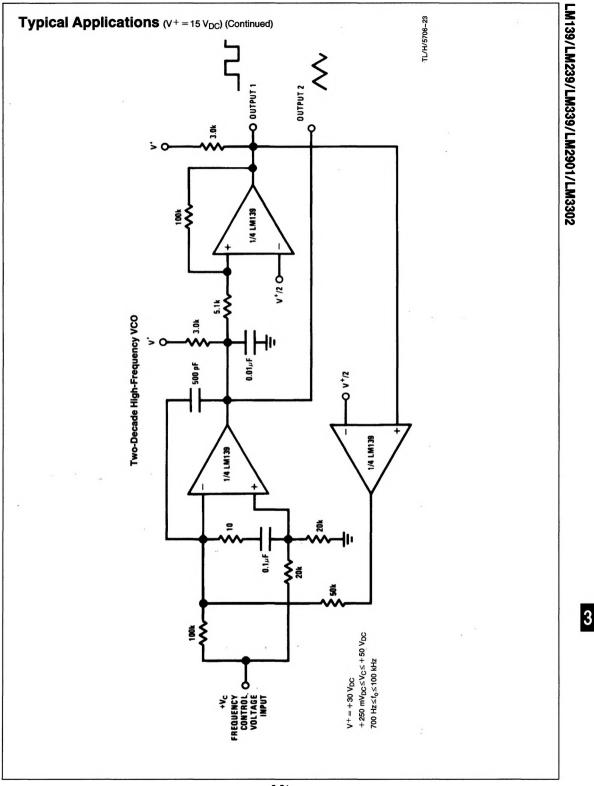
It is usually unnecessary to use a bypass capacitor across the power supply line.

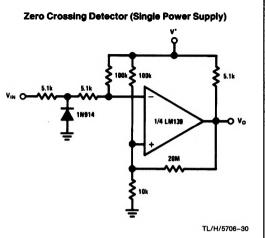

The differential input voltage may be larger than V⁺ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V_{DC} (at 25°C). An input clamp diode can be used as shown in the applications section.


The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V⁺) and the β of this device. When the maximum current limit is reached (approximately 16 mA). the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60Ω R_{SAT} of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.


Typical Applications (V+ = 5.0 V_{DC})



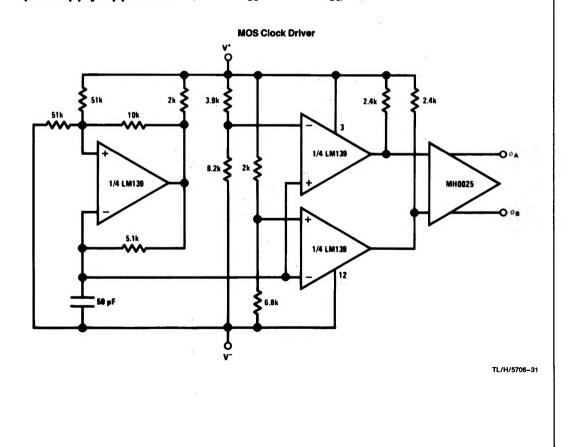

_M139/LM239/LM339/LM2901/LM3302



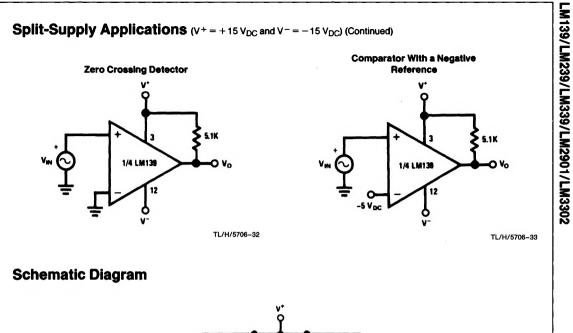
Typical Applications (V⁺ = 5 V_{DC}) (Continued) Transducer Amplifier

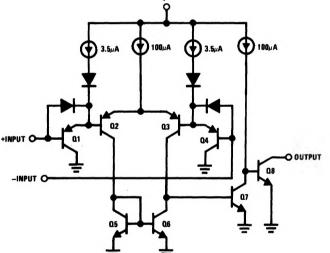
1/4 LM139

20N



Split-Supply Applications ($V^+ = +15 V_{DC}$ and $V^- = -15 V_{DC}$)


٧o


TL/H/5706-28

0

MAGNETIC PICKUP

TL/H/5706-1