

National Semiconductor

LM105/LM205/LM305/LM305A, LM376 Voltage Regulators

General Description

The LM105 series are positive voltage regulators similar to the LM100, except that an extra gain stage has been added for improved regulation. A redesign of the biasing circuitry removes any minimum load current requirement and at the same time reduces standby current drain, permitting higher voltage operation. They are direct, plug-in replacements for the LM100 in both linear and switching regulator circuits with output voltages greater than 4.5V. Important characteristics of the circuits are:

- Output voltage adjustable from 4.5V to 40V
- Output currents in excess of 10A possible by adding external transistors
- Load regulation better than 0.1%, full load with current limiting

- DC line regulation guaranteed at 0.03%/V
- Ripple rejection on 0.01%V
- 45 mA output current without external pass transistor (LM305A)

Like the LM100, they also feature fast response to both load and line transients, freedom from oscillations with varying resistive and reactive loads and the ability to start reliably on any load within rating. The circuits are built on a single silicon chip and are supplied in either a TO-99 metal can or an 8-lead dual-in-line package (as LM376N).

The LM105 is specified for operation for $-55^\circ C \le T_A \le +125^\circ C$, the LM205 is specified for $-25^\circ C \le T_A \le +85^\circ C$, and the LM305/LM305A, LM376 is specified for $0^\circ C \le T_A \le +70^\circ C$.

Schematic and Connection Diagrams

SE
2
-
-
3
£
-
2
E
×
3
5
(D)
-
-
0
()
Ő

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

	LM105	LM205	LM305	LM305A	LM376
Input Voltage	50V	50V	40V	50V	40V
Input-Output Differential	40V	40V	40V	40V	40V
Power Dissipation (Note 1)	800 mW	800 mW	800 mW	800 mW	400 mW
Operating Temperature Range	-55°C to +125°C	-25°C to +85°C	-0°C to +70°C	0°C to + 70°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C				
Lead Temperature (Soldering, 10 seconds)	300°C	300°C	300°C	300°C	260°C

Electrical Characteristics (Note 2)

Parameter	Conditions		LM105			LM205			LM305			LM305A			LM376		Units
		Min	Typ	Мах	Min	Typ	Мах	Min	Typ	Max	Min	Typ	Мах	Min	Typ	Мах	
Input Voltage Range		8.5		50	8.5		50	8.5		40	8.5		50	9.0		40	>
Output Voltage Range		4.5		40	4.5		40	4.5		30	4.5		40	5.0		37	>
Input-Output Voltage Differential		3.0		30	3.0		30	3.0		30	3.0		30	3.0		30	>
Load Regulation	$R_{SC} = 10\Omega, T_A = 25^{\circ}C$		0.02	0.05		0.02	0.05		0.02	0.05							%
(Note 3)	$R_{SC} = 10\Omega, T_A = T_{A(MAX)}$		0.03	0.1		0.03	0.1		0.03	0.1							%
	$R_{SC} = 10\Omega, T_A = T_{A(MIN)}$		0.03	0.1		0.03	0.1		0.03	0.1							%
		> 0	lo ≤ 12	mA	≥ 0	lo ≤ 12	mA	0 ≤	lo ≤ 12	mA							
	$R_{SC} = 0\Omega, T_A = 25^{\circ}C$											0.02	0.2			0.2	%
	$R_{SC} = 0.0, T_A = 70^{\circ}C$											0.03	0.4			0.5	%
	$R_{SC} = 0.0, T_A = 0^{\circ}C$											0.03	0.4			0.5	%
											5 0	lo ≤ 45	mA	0 ≤	lo ≤ 25	mA	
Line Regulation	$T_A = 25^{\circ}C$															0.03	N/%
	$0^{\circ}C \leq T_A \leq +70^{\circ}C$															0.1	N/%
	$V_{IN}-V_{OUT} \leq 5V, T_A=25^\circ C$		0.025	0.06		0.025	0.06		0.025	0.06		0.025	0.06				N/%
	$V_{IN}-V_{OUT} \geq 5V, T_A=25^\circ C$		0.015	0.03		0.015	0.03		0.015	0.03		0.015	0.03				N%
Temperature Stability	$T_A(MIN) \le T_A \le T_A(MAX)$		0.3	1.0		0.3	1.0		0.3	1.0		0.3	1.0				%

ധ
~
ò.
÷.
2
_
~
▰
5
ž.
~
~
2
~
ເດີ
õ
~
2
_
<
S.
Ô
Ñ
÷.
ج.
_
>
ŝ
0
-
5
_

Image Image </th <th>e 2) (Cor</th>	e 2) (Cor
yp Max Min Typ	L
1.7 1.81 1.63 1.7 1.81 1.63 1.7 1.81 1.63 1.7 1.81 1.62 1.7 1.81 1.62 1.7 1.81 1.62 1.7 1.81 1.62 1.7 1.81 1.62 1.7 1.81 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.81 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.81 1.7 1.81 1.7 1.81 1.7 1.81 1.7 1.81 1.7 1.81 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 1.7 1.80 <	Min
005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0	1.63
005 1 0.005 1 0.005 1 0.005 1	
002 1 0.002 1 0.002 1 0.002 1 <th1< th=""> <th1< th=""> <th1< th=""> <!--</td--><td>ō</td></th1<></th1<></th1<>	ō
0 1 0 1 0 1 2.5 m/ 0.8 2.0 0 2.0 0	0
0.8 2.0 0.8 2.0 0.8 2.0 0.8 2.0 0.1 <td></td>	
0.8 2.0 0.8 2.0 0.8 2.0 0.8 2.0 0.1 <td></td>	
00 375 226 300 375 300 375 300 m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 300	
0.1 0.1 <td>225 3</td>	225 3
003 0.003 0.003 0.003 140 %/ 30 230 230 230 230 140 *C/ 26 230 230 230 230 230 20 27 92 92 92 92 92 20 26 25 25 25 25 20	0
30 230 230 230 0.7 92 92 92 92 0.7 25 25 25 0.7	0
92 92 92 92 92 °C/	
5 25 25 25 25 25 °C/	6

1-14

Note 1: The maximum junction temperature of the LMTUS and LMSUSM is 120'U, and LMSUP and LMSUP is 10'U, and unstruction to and LMSUP internation and the maximum junction to ambient, or 25'C/W junction to ambient, Peak dissipations to 1W are allowable providing the dissipation rating is not exceeded with the power average over a five second interval for the LM105 and LM205, and averaged over a two second interval for the LM305.

Note 2: Unless otherwise specifications apply for temperatures within the operating temperature range, for input and output voltages within the range given, and for a divider impedance seen by the feedback terminal of 2 kn. Load and line regulation specifications are for a constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

Note 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors. Note 4: With no external pass transistor.

Note 5: Refer to RETS105X Drawing for military specifications for the LM105.

