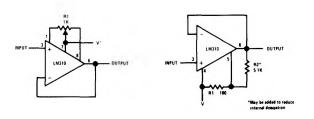

Operational Amplifiers

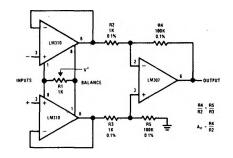
LM310 voltage follower


general description

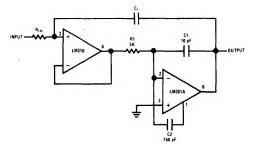
The LM310 is a monolithic operational amplifier internally connected as a unity-gain non-inverting amplifier. It uses super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 301, 741C and 709C in voltage follower applications, this device has internal frequency compensation and provision for offset balancing. Outstanding characteristics include:

- Input current: 10 nA max, over temperature
- Small signal bandwidth: 20 MHz
- schematic diagram

auxiliary circuits



Offset Balancing Circuit Increasing Negative Swing Under Load


- Slew rate: 30V/µs
- Supply voltage range: ±5V to ±18V

The LM310 is useful in fast sample and hold circuits, active filters or as a general-purpose buffer. Further, the frequency response is enough better than standard IC amplifiers that the follower can be included in the feedback loop without introducing instability. It is a plug-in replacement for the LM302 voltage follower, offering lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

Differential Input Instrumentation Amplifier

Fast Integrator with Low Input Current

Fast Inverting Amplifier with High Input Impedance

absolute maximum ratings

Supply Voltage	±18V
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	±15V
Output Short Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	–65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

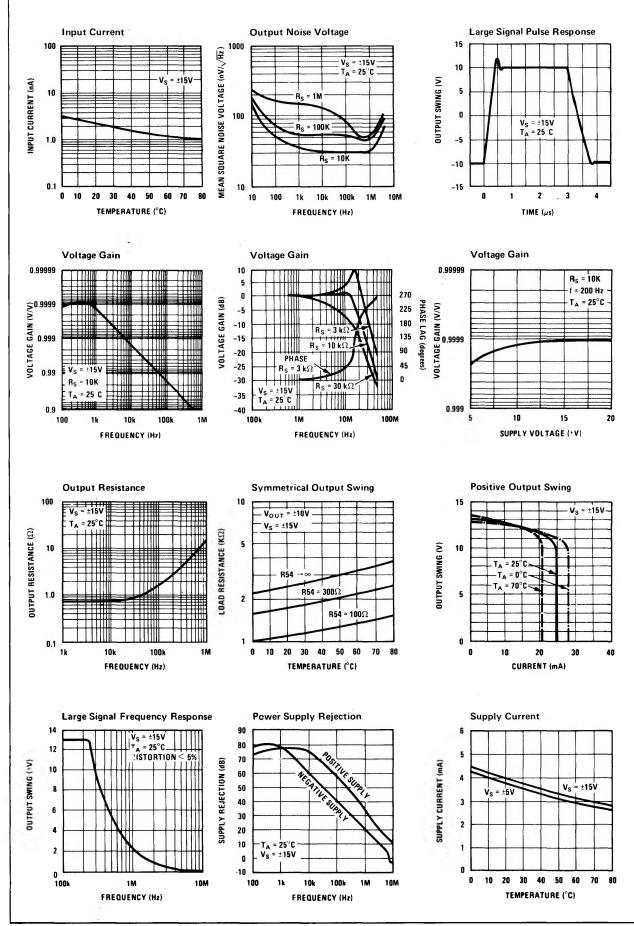
electrical characteristics (Note 4)

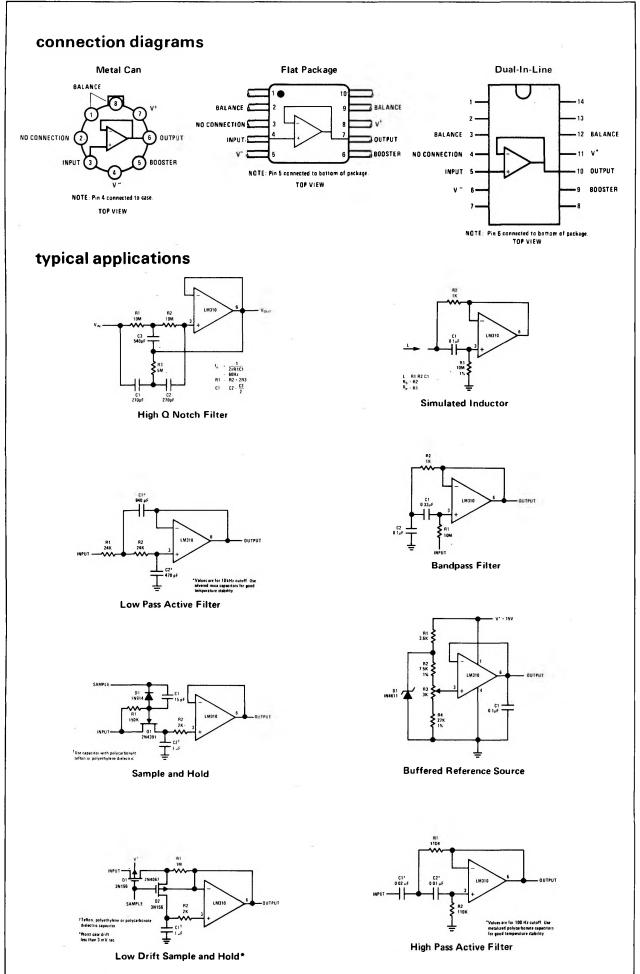
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Input Offset Voltage	T _A = 25°C		2.5	7.5	mV	
Input Bias Current	T _A = 25°C		2.0	7.0	nA	
Input Resistance	T _A = 25°C	10 ¹⁰	10 ¹²		Ω	
Input Capacitance			1.5		pF	
Large Signal Voltage Gain	T _A = 25°C, V _S = ±15V V _{OUT} = ±10V, R _L = 8KΩ	0.999	0.9999	¢-	v/v	
Output Resistance	T _A = 25°C	2	0.75	2.5	Ω	
Supply Current	T _A = 25°C		3.9	5.5	mA	
Input Offset Voltage				10	mV	
Offset Voltage Temperature Drift			10		μV/°C	
Input Bias Current				10	nA	
Large Signal Voltage Gain	V _S = ±15V, V _{OUT} = ±10V R _L = 10ΚΩ	0.999			V/V	
Output Voltage Swing (Note 5)	V_{S} = ±15V, R _L = 10K Ω	±10			v	
Supply Voltage Rejection Ratio	$\pm 5V \le V_S \le \pm 18V$	70	80	- ()	dB	

Note 1: The maximum junction temperature of the LM310 is 85° C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to ambient, or 45° C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185° C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100° C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

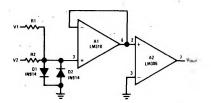
Note 3: Continuous short circuit is allowed for case temperatures to 70° C and ambient temperatures to 55° C. It is necessary to insert a resistor greater than 2 k Ω in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

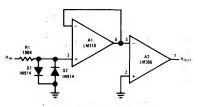

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 18V$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified.


Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^- terminals. See curve.

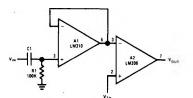
M310

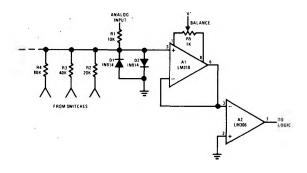
typical performance

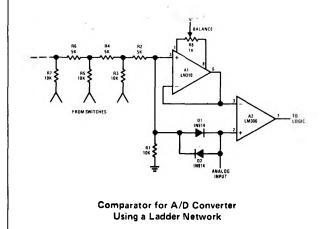


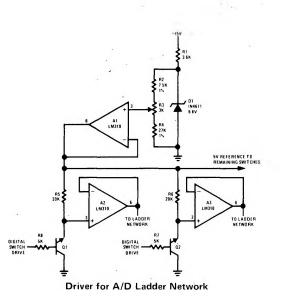

لــــ 99

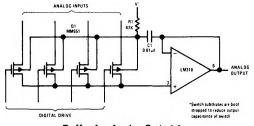
LM310

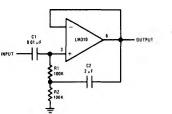

typical applications

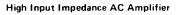

Comparator for Signals of Opposite Polarity

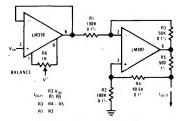

Zero Crossing Detector

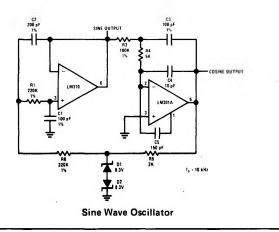



Comparator for AC Coupled Signals


Comparator for A/D Converter Using a Binary-Weighted Network






Buffer for Analog Switch*

Bilateral Current Source

