

LM431A Adjustable Precision Zener Shunt Regulator

General Description

The LM431A is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set at any level greater than 2.5V (V_{REF}) up to 36V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications.

Features

- Average temperature coefficient 50 ppm/°C
- Temperature compensated for operation over the full temperature range
- Programmable output voltage
- Fast turn-on response
- Low output noise

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range	-65°C to +150°C
Operating Temperature Range Industrial (LM431AI) Commercial (LM431AC)	-40°C to +85°C 0°C to +70°C
Lead Temperature TO-92 Package/SO-8 Package (Soldering, 10 sec.)	265°C
Internal Power Dissipation (Notes 1, 2) TO-92 Package SO-8 Package	0.78W 0.81W

Cathode Voltage		37V		
Continuous Cathode Current	-10 mA to +150 mA			
Reference Voltage		-0.5V		
Reference Input Current		10 mA		
Operating Conditions	Min	Max		
Cathode Voltage	VREF	37V		
Cathode Current	1.0 mA	100 mA		
Note 1: T _{J Max} = 150°C.				

Note 2: Ratings appy to ambient temperature at 25°C. Above this temperature, derate the TO-92 at 6.2 mW/°C, and the SO-8 at 6.5 mW/°C.

LM431A

Electrical Characteristics TA = 25°C unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
VREF	Reference Voltage	$V_Z = V_{REF}, I_I = 10 \text{ mA}$ (Figure 1)		2.440	2.495	2.550	V
V _{DEV}	Deviation of Reference Input Voltage Over Temperature (Note 3)	$V_Z = V_{REF}$, I ₁ = 10 mA, T _A = Full Range <i>(Figure 1)</i>			8.0	17	mV
ΔV _{REF} ΔV _Z Reference V Change in C Voltage	Ratio of the Change in Reference Voltage to the	lz = 10 mA <i>(Figure 2)</i>	V _Z from V _{REF} to 10V		-1.4 -	-2.7	mV/V
	Change in Cathode Voltage		Vz from 10V to 36V		-1.0	2.0	
REF	Reference Input Current	$R_1 = 10 k\Omega, R_2 = \infty,$ $I_1 = 10 mA (Figure 2)$			2.0	4.0	μΑ
∝IREF	Deviation of Reference Input Current over Temperature	$\begin{array}{l} R_1 = 10 \ k\Omega, \ R_2 = \infty, \\ I_1 = 10 \ mA, \\ T_A = Full \ Range \ \textit{(Figure 2)} \end{array}$			0.4	1.2	μΑ
IZ(MIN)	Minimum Cathode Current for Regulation	V _Z = V _{REF} (Figure 1)			0.4	1.0	mA
IZ(OFF)	Off-State Current	$V_Z = 36V, V_{REF} = 0V$ (Figure 3)			0.3	1.0	μΑ
٢z	Dynamic Output Impedance (Note 4)	V _Z = V _{REF} , Frequency = 0 Hz <i>(Figure 1)</i>				0.75	Ω

Note 3: Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range.

The average temperature coefficient of the reference input voltage, ${\simeq}\,v_{\text{REF}}$ is defined as:

$$\propto V_{\mathsf{REF}} \frac{\mathsf{ppm}}{^*\mathsf{C}} = \frac{\pm \left[\frac{\mathsf{V}_{\mathsf{Max}} - \mathsf{V}_{\mathsf{Min}}}{\mathsf{V}_{\mathsf{REF}}(\mathsf{at}\,25^*\mathsf{C})}\right]_{10^6}}{\mathsf{T}_2 - \mathsf{T}_1} = \frac{\pm \left[\frac{\mathsf{V}_{\mathsf{DEV}}}{\mathsf{V}_{\mathsf{REF}}(\mathsf{at}\,25^*\mathsf{C})}\right]_{10^6}}{\mathsf{T}_2 - \mathsf{T}_1}$$

Where:

 $T_2 - T_1 =$ full temperature change.

 $\propto V_{\text{REF}}$ can be positive or negative depending on whether the slope is positive or negative.

Example: V_{DEV} = 8.0 mV, V_{REF} = 2495 mV, T_2 - T_1 = 70°C, slope is positive.

$$\propto V_{\text{REF}} = \frac{\left[\frac{8.0 \text{ mV}}{2495 \text{ mV}}\right]_{10^8}}{70^{\circ}\text{C}} = +46 \text{ ppm/}^{\circ}\text{C}$$

Note 4: The dynamic output impedance, rz, is defined as:

$$r_z = \frac{\Delta V_z}{\Delta I_z}$$

When the device is programmed with two external resistors, R1 and R2, (see Figure 2), the dynamic output impedance of the overall circuit, r_Z , is defined as:

 $r_{Z} = \frac{\Delta V_{Z}}{\Delta I_{Z}} \simeq \left[r_{Z} \ 1 + \frac{R_{1}}{R_{2}} \right]$

1-178

