

LM79MXX Series 3-Terminal Negative Regulators

General Description

The LM79MXX series of 3-terminal regulators is available with fixed output voltages of -5V, -12V, and -15V. These devices need only one external component—a compensation capacitor at the output. The LM79MXX series is packaged in the TO-220 power package, and is capable of supplying 0.5A of output current.

These regulators employ internal current limiting, safe area protection, and thermal shotdown for protection against virtually all overload conditions.

Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode. For output voltage other than -5V, -12V, and -15V the LM137 series provides an output voltage range from -1.2V to -57V.

LM79MXX Series

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5A output current
- 4% tolerance on preset output voltage

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

input voitage	
$V_0 = -5V$	25V
$V_0 = -12V, -15V$	-35V
Input/Output Differential	
$V_0 = -5V$	25V
$V_0 = -12V, -15V$	30V

Power Dissipation (Note 2)	Internally Limited
Operating Junction Temperature Range	0°C to + 125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	230°C
ESD Susceptability	TBD

Electrical Characteristics LM79M05C

Conditions unless otherwise noted: $I_{OUT} = 350 \text{ mA}$, $C_{IN} = 2.2 \ \mu\text{F}$, $C_{OUT} = 1 \ \mu\text{F}$, $0^{\circ}\text{C} \le T_{J} \le +125^{\circ}\text{C}$

Part Numbe	r	LM79M05C					
Output Voltage Input Voltage (Unless Otherwise Specified)			-5V.			11-14-	
			- 10V		150 PT	Units	
Symbol	Parameter	Conditions	Min Typ		Max		
vo	Output Voltage	T _J = 25°C	-4.8	-5.0	-5.2	v	
		5 mA ≤ I _{OUT} ≤ 350 mA	-4.75 (-	-25 ≤ V _{IN} ≤ −	-5.25 7)	v	
ΔV _O	Line Regulation	T _J = 25°C (Note 3)	(-	8 •25 ≤ V _{IN} ≤ - 2 18 ≤ V _{IN} ≤ -	7) 30 8)	m∨ mV	
ΔVO	Load Regulation	T _J = 25°C, (Note 3) 5 mA ≤ I _{OUT} ≤ 0.5A		30	100	mV	
la	Quiescent Current	$T_{J} = 25^{\circ}C$		1	2	mA	
ΔlQ	Quiescent Current Change	With Input Voltage With Load,	(-	•25 ≤ V _{IN} ≤ −	0.4 8)	mA	
Vn	Output Noise Voltage	$T_A = 25^{\circ}C,$ 10 Hz $\leq f \leq 100$ Hz		150		μV	
	Ripple Rejection	f = 120 Hz	54 (-	66 -18 ≤ V _{IN} ≤ −	8)	dB	
	Dropout Voltage	$T_{\rm J} = 25^{\circ} {\rm C}, {\rm I}_{\rm OUT} = 0.5 {\rm A}$		1.1		v	
IOMAX	Peak Output Current	T _J = 25°C		800		mA	
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA},$ $0^{\circ}C \le T_{J} \le 100^{\circ}C$		-0.4		mV/°0	

Part Number Output Voltage			LM79M12C - 12V		LM79M15C - 15V				
									Input Vol
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	
vo	Output Voltage	T _J = 25°C	-11.5	-12.0	- 12.5	-14.4	- 15.0	-15.6	. v
		5 mA ≤ I _{OUT} ≤ 350 mA	-11.4 (-27	≤ V _{IN} ≤ -	- 12.6 - 14.5)	-14.25 (-30	≤ V _{IN} ≤ -	- 15.75 - 10.5)	v
ΔV _O	Line Regulation	T _J = 25°C (Note 3)	(-30	5 ≤ V _{IN} ≤ - 3	80 - 14.5) 50	(-30	5, ≤ V _{IN} ≤ − 3	80 - 17.5) 50	m∨ m∨
ΔVO	Load Regulation	T _J = 25°C, (Note 3) 5 mA ≤ I _{OUT} ≤ 0.5A	(-25	30	240	(-20	30	240	m∨
1 <u>a</u>	Quiescent Current	T _J = 25°C		1.5	3	2	1.5	3	mA
ΔlQ	Quiescent Current Change	With Input Voltage With Load, 5 mA $\leq I_{OUT} \leq 350$ mA	(-30	≤ V _{IN} ≤ -	0.4 - 14.5) 0.4	(-30) ≤ V _{IN} ≤	0.4 27) 0.4	mA mA
Vn	Output Noise Voltage	T _A = 25°C, 10 Hz ≤ f ≤ 100 Hz		400	10-1 1	-	400		μV
	Ripple Rejection	f = 120 Hz	54 (-25	70 ≤ V _{IN} ≤	- 15)	54 (-30	70 ≤ V _{IN} ≤ -	- 17.5)	dB
-	Dropout Voltage	$T_{\rm J} = 25^{\circ}{\rm C}, I_{\rm OUT} = 0.5{\rm A}$		1.1			1.1		v
IOMAX	Peak Output Current	T _J = 25°C		800			800		mA
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA},$ 0°C $\leq T_J \leq 100$ °C		-0.8		* e	- 1.0		mV/°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

Note 3: Regulation is measued at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

LM79MXX Series

- -

Quiescent Current vs Load Current

Maximum Average Power Dissipation (TO-220)

Vout

Τ,

= 25%

= 1 118

100k

35 40

TL/H/10483-10

- -

Design Considerations

The LM79MXX fixed voltage regulator series have thermaloverload protection from excessive power, internal short-circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

	Package	θJC (°C/W)	θ _{JA} (°C/W)	
TO-220		3	40	
PD	$\theta_{MAX} = \frac{T_{JMax} - T}{\theta_{JC} + \theta_{C}}$	TA or	-	(1)
	$= \frac{T_{JMax} - \theta_{JA}}{\theta_{JA}}$	T _A (Without a H	eat Sink)	
θ_{CA}	$= \theta_{\rm CS} + \theta_{\rm SA}$			
Solvi	ing for T _J :			
$T_J =$	$T_A + P_D(\theta_{JC} +$	- θ _{CA}) or		
=	$T_A = + P_D \theta_{JA}$	(Without a Heat	t Sink)	
Whe	re			
ТJ	= Junction Tem	perature		
TA	= Ambient Tem	perature		
PD	= Power Dissipa	ation		
$\theta_{\rm JC}$	= Junction-to-Ca	ase Thermal Re	sistance	
θCA	= Case-to-Ambi	ent Thermal Re	sistance	
$\theta_{\rm CS}$	= Case-to-Heat	Sink Thermal R	esistance	
θSA	= Heat Sink-to-/	Ambient Therma	I Resistance	
θιΔ	= Junction-to-A	nbient Thermal	Resistance	

Typical Applications

Bypass capacitors are necessary for stable operation of the LM79MXX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.

The bypass capacitors (2.2 μ F on the input, 1.0 μ F on the output), should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 μ F or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

TL/H/10483-2

*Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25 µF aluminum electrolytic may be substituted.

 \dagger Required for stability. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of 100 μ F, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

*Improves transient response and ripple rejection. Do not increase beyond 50 μF.

$$V_{OUT} = V_{SET} \left(\frac{R1 + R2}{R2} \right)$$

Select R2 as follows: LM79M05C 300Ω LM79M12C 750Ω LM79M15C 1k

...