

LMC6572/LMC6574 Dual and Quad Low Voltage (2.7V and 3V) Operational Amplifier

Check for Samples: LMC6572, LMC6574

FEATURES

- (Typical unless otherwise noted)
- Guaranteed 2.7V and 3V Performance
- Rail-to-Rail Output Swing (within 5 mV of supply rail, 100 $k\Omega$ load)
- Ultra-Low Supply Current: 40 μA/Amplifier
- Low Cost
- Ultra-Low Input Current: 20 fA
- High Voltage Gain @ V_S =2.7V, R_I =100 k Ω : 120 dB
- Specified for 100 k Ω and 5 k Ω loads

Available in MSOP Package

APPLICATIONS

- Transducer Amplifier
- Portable or Remote Equipment
- Battery-Operated Instruments
- Data Acquisition Systems
- Medical Instrumentation
- Improved Replacement for TLV2322 and TLV2324

DESCRIPTION

Low voltage operation and low power dissipation make the LMC6574/2 ideal for battery-powered systems.

3V amplifier performance is backed by 2.7V guarantees to ensure operation throughout battery lifetime. These guarantees also enable analog circuits to operate from the same 3.3V supply used for digital logic.

Battery life is maximized because each amplifier dissipates only micro-watts of power.

The LMC6574/2 does not sacrifice functionality for low voltage operation. The LMC6574/2 generates 120 dB of open-loop gain just like a conventional amplifier, but the LMC6574/2 can do this from a 2.7V supply.

These amplifiers are designed with features that optimize low voltage operation. The output voltage swings rail-to-rail to maximize signal-to-noise ratio and dynamic signal range. The common-mode input voltage range extends from 800 mV below the positive supply to 100 mV below ground.

This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.

LMC6572 is also available in MSOP package which is almost half the size of a SO-8 device.

Connection Diagram

8-Pin DIP/SO/MSOP

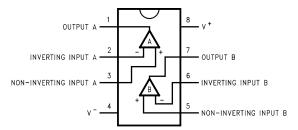


Figure 1. Order Number LMC6572AIN, LMC6572BIN, LMC6572AIM, LMC6572BIMX, LMC6572BIMM or LMC6572BIMMX

See NS Package Number N08E, M08A or MUA08A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

14-Pin DIP/SO

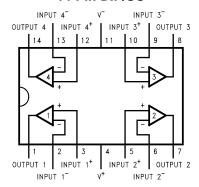


Figure 2. Order Number LMC6574AIN, LMC6574BIN, LMC6574AIM, LMC6574AIMX, LMC6574BIM or LMC6574BIMX

See NS Package Number N14A or M14A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

2000V
2000
±Supply Voltage
(V ⁺) +0.3V,
(V⁻) −0.3V
12V
±5 mA
±10 mA
35 mA
260°C
−65°C to +150°C
150°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.
- (2) Human body model, 1.5 $k\Omega$ in series with 100 pF.
- (3) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
- (4) The maximum power dissipation is a function of $T_{J(Max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(Max)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Operating Ratings (1)

_ :	
Supply Voltage	2.7V ≤ V ⁺ ≤ 11V
Junction Temperature Range	
LMC6572AI, LMC6572BI	-40°C ≤ T _J ≤ +85°C
LMC6574AI, LMC6574BI	-40°C ≤ T _J ≤ +85°C
Thermal Resistance (θ_{JA})	
N Package, 8-Pin Molded DIP	115°C/W
M Package, 8-Pin Surface Mount	193°C/W
MSOP Package, 8-Pin Mini SO	217°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.

www.ti.com

SNOS707C - MAY 2004-REVISED NOVEMBER 2004

Operating Ratings (1) (continued)

N Package, 14-Pin Molded DIP	81°C/W
M Package, 14-Pin Surface Mount	126°C/W

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conc	ditions	Typ (1)	LMC6574AI	LMC6574BI	Units
				(1)	LMC6572AI	LMC6572BI	
					Limit	Limit	
					(2)	(2)	
Vos	Input Offset Voltage	V ⁺ = 2.7V and 3V		0.5	3	7	mV
					3.5	7.5	Max
TCV _{OS}	Input Offset Voltage			1.5			μV/°C
	Average Drift						•
I _B	Input Current			0.02			pA
ь	'				10	10	Max
I _{OS}	Input Offset Current			0.01			pA
.00	Topic and a				6	6	Max
R _{IN}	Input Resistance			>1			Tera Ω
C _{IN}	Common-Mode			3			pF
CIIN .	Input Capacitance			-			r
CMRR	Common Mode	0V ≤ V _{CM} ≤ 3.5V		75	63	60	dB
Olvii ti t	Rejection Ratio		$V^{+} = 5V$		60	57	Min
+PSRR	Positive Power Supply	$2.7V \le V^+ \le 5V,$		75	67	60	dB
11 01	Rejection Ratio	V ⁻ = 0V		, ,	65	58	Min
-PSRR	Negative Power Supply	-2.7V ≤ V ⁻ ≤ -5V,		83	75	67	dB
TOILL	Rejection Ratio	$V^{+} = 0V$			73	65	Min
V _{CM}	Input Common-Mode	V = 0V $V^{+} = 2.7V \text{ and } 3V$		-0.1	-0.05	-0.05	V
v Ciw	Voltage Range	for CMRR ≥ 50 dB		0	0.03	0.03	Max
	Voltage Ivalige	101 0141111 = 00 0=		V+ - 0.8	V ⁺ - 1.0	V ⁺ - 1.0	V
		_		V 0.0	V - 1.0	V ⁺ - 1.3	Min
A _V	Large Signal	R _L = 100 kΩ	Sourcing	1000	V 110	V - 1.0	V/mV
AV	Voltage Gain	(3)	Journing	1000			V/IIIv
	Voltage Gain		Sinking	500			V/mV
			Silining				
V_{O}	Output Swing	V ⁺ = 2.7V		2.695	2.68	2.65	V
		$R_L = 100 \text{ k}\Omega \text{ to V}^+/\Omega$	/2		2.66	2.62	Min
				0.005	0.03	0.06	V
					0.05	0.09	Max
		V ⁺ = 2.7V		2.66	2.55	2.45	V
		$R_L = 5 k\Omega \text{ to } V^+/2$			2.45	2.35	Min
				0.04	0.15	0.25	V
				T	0.25	0.35	Max
		V ⁺ = 3V		2.995	2.98	2.95	V
		$R_L = 100 \text{ k}\Omega \text{ to V}^{+}/$	/2	<u></u>	2.96	2.93	Min
		<u> </u>		0.005	0.03	0.06	٧
				<u> </u>	0.05	0.09	Max
		V ⁺ = 3V		2.96	2.85	2.75	V
		$R_L = 5 \text{ k}\Omega \text{ to V}^+/2$			2.75	2.65	Min
				0.04	0.15	0.25	V
					0.25	0.35	Max

⁽¹⁾ Typical values represent the most likely parametric norm.

Product Folder Links: LMC6572 LMC6574

Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

⁽²⁾ All limits are guaranteed by testing or statistical analysis.

⁽³⁾ $V^+ = 3V$, $V_{CM} = 1.5V$ and R_L connected to 1.5V. For Sourcing tests, 1.5V $\leq V_O \leq$ 2.5V. For Sinking tests, 0.5V $\leq V_O \leq$ 1.5V.

2.7V DC Electrical Characteristics (continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ	LMC6574AI	LMC6574BI	Units
			(1)	LMC6572AI	LMC6572BI	
				Limit	Limit	
				(2)	(2)	
I _{SC}	Output Short	Sourcing, V _O = 0V	6.0	4.0	3.0	mA
	Circuit Current			3.0	2.0	Min
		Sinking, V _O = 2.7V	4.0	3.0	2.5	mA
				2.0	1.5	Min
I _S	Supply Current	Quad Package	160	240	240	μΑ
		$V^+ = +2.7V, V_O = V^+/2$		280	280	Max
		Quad Package	160	240	240	μΑ
		$V^+ = +3V, V_O = V^+/2$		280	280	Max
		Dual Package	80	120	120	μΑ
		$V^+ = +2.7V, V_O = V^+/2$		140	140	Max
		Dual Package	80	120	120	μΑ
		$V^+ = +3V$, $V_O = V^+/2$		140	140	Max

2.7V AC Electrical Characteristics

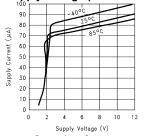
Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω . Boldface limits apply at the temperature extremes.

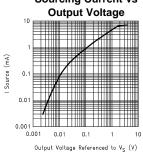
Symbol	Parameter	Conditions	Typ	LMC6574AI	LMC6574BI	Units
			(1)	LMC6572AI	LMC6572BI	
				Limit	Limit	
				(2)	(2)	
SR	Slew Rate	V ⁺ = 2.7V and 3V	90	30	30	V/ms
		(3)		10	10	Min
GBW	Gain-Bandwidth Product	V ⁺ = 3V	0.22			MHz
ϕ_{m}	Phase Margin		60			Deg
G _m	Gain Margin		12			dB
	Amp-to-Amp Isolation	(4)	120			dB
e _n	Input-Referred	F = 1 kHz	45			nV/√Hz
	Voltage Noise	V _{CM} = 1V				
i _n	Input-Referred	F = 1 kHz	0.002			pA/√Hz
	Current Noise					
T.H.D.	Total Harmonic Distortion	F = 10 kHz, A _V = −2	0.05			%
		$R_L = 10 \text{ k}\Omega, V_O = 1.0 V_{PP}$				

Typical values represent the most likely parametric norm.

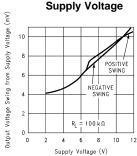
(2) (3) (4)

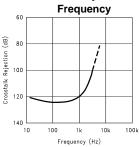
All limits are guaranteed by testing or statistical analysis.


Connected as Voltage Follower with 1.0V step input. Number specified is the slower of the positive and negative slew rates. Input referred, $V^+ = 3V$ and $R_L = 100 \text{ k}\Omega$ connected to 1.5V. Each amp excited in turn with 1 KHz to produce $V_O = 2 \text{ V}_{PP}$.

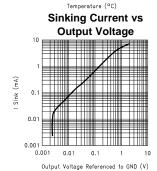

Typical Performance Characteristics

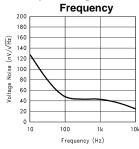
 $V_S = +3V$, $T_A = 25$ °C, Unless otherwise specified


Supply Current vs Supply Voltage (Dual Package)

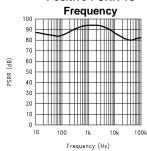

Sourcing Current vs

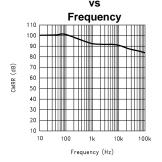
Output Voltage Swing vs

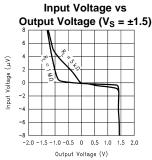

Crosstalk Rejection vs

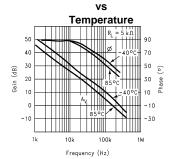

Negative PSRR vs Frequency 100 100 1k Frequency (Hz)

Input Current vs **Temperature** 100 (pA) 0. 0.00

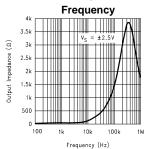

50 75 100 125 150

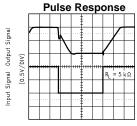

Input Voltage Noise vs

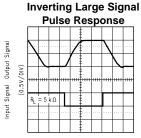

CMRR



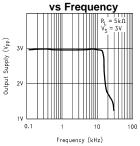
Typical Performance Characteristics (continued)

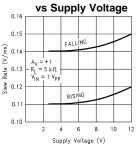

 $V_S = +3V$, $T_A = 25$ °C, Unless otherwise specified

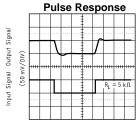

Open Loop Frequency Response

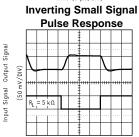

Z_{OUT}

Non-Inverting Large Signal


Time (5 $\mu s/DIV$)

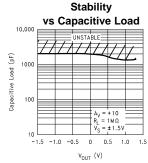

Time (5 μ s/DIV)

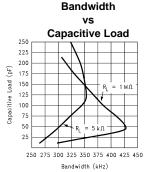

Maximum Output Swing

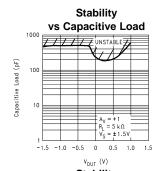

Slew Rate

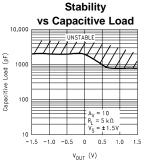
Non-Inverting Small Signal

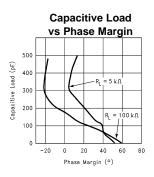
Time (5 μ s/DIV)

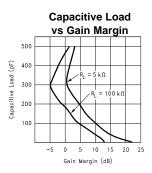

Time (5 μs/DIV)




Typical Performance Characteristics (continued)


 $V_S = +3V$, $T_A = 25$ °C, Unless otherwise specified





Applications Hints

LOW VOLTAGE AMPLIFIER TOPOLOGY

The LMC6574/2 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6574/2 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

Product Folder Links: LMC6572 LMC6574

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6574/2.

Although the LMC6574/2 is highly stable over a wide range of operating conditions, a large feedback resistor will react even with small values of capacitance at the input of the op-amp to reduce phase margin. The capacitance at the input of the op-amp comes from transducers, photodiodes and circuit board parasitics.

The effect of input capacitance can be compensated for by adding a capacitor, C_f, around the feedback resistors (as in Figure 3) such that:

$$\frac{1}{2\pi R_1 C_{\text{IN}}} \ge \frac{1}{2\pi R_2 C_{\text{f}}} \tag{1}$$

or

$$R_1 C_{IN} \le R_2 C_f \tag{2}$$

Since it is often difficult to know the exact value of C_{IN} , C_f can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

When high input impedances are demanded, guarding of the LMC6574/2 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See *Printed-Circuit-Board Layout for High Impedance Work*).

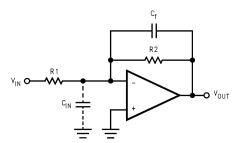


Figure 3. Cancelling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unity-gain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 4.

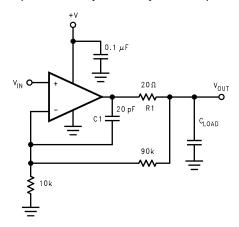


Figure 4. LMC6574/2 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads

In the circuit of Figure 4, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6574/2, typically less than 20 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6574/2's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the opamp's inputs, as in Figure 5. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12}\Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6574/2's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11}\Omega$ would cause only 0.05 pA of leakage current. See Figure 8 for typical connections of guard rings for standard op-amp configurations.

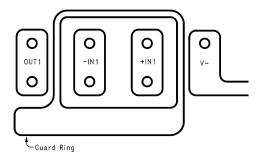


Figure 5. Example of Guard Ring in P.C. Board Layout

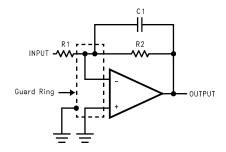


Figure 6. Inverting Amplifier

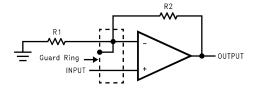
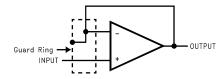
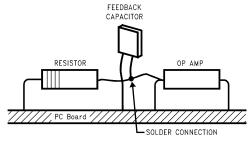



Figure 7. Non-Inverting Amplifier

Product Folder Links: LMC6572 LMC6574



Follower

Figure 8. Typical Connections of Guard Rings

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 9.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

Figure 9. Air Wiring

SPICE MACROMODEL

A spice macromodel is available for the LMC6574/2. This model includes accurate simulation of:

- input common-mode voltage range
- · frequency and transient response
- · GBW dependence on loading conditions
- · quiescent and dynamic supply current
- output swing dependence on loading conditions

and many more characteristics as listed on the macromodel disk.

Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

Typical Single-Supply Applications

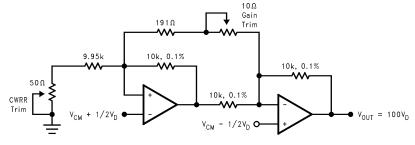


Figure 10. Low-Power Two-Op-Amp Instrumentation Amplifier

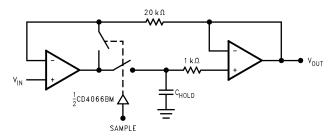


Figure 11. Sample and Hold

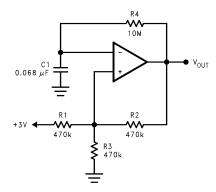


Figure 12. 1 Hz Square Wave Oscillator

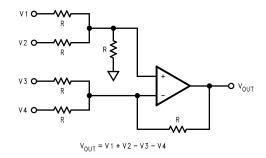


Figure 13. Adder/Subtractor Circuit

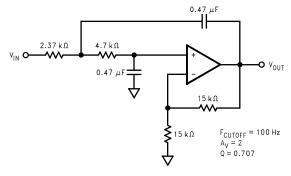


Figure 14. Low Pass Filter

17-Nov-2012

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
LMC6572AIM	ACTIVE	SOIC	D	8	95	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6572AIM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6572AIMX	ACTIVE	SOIC	D	8	2500	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6572AIMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6572BIM	ACTIVE	SOIC	D	8	95	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6572BIM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6572BIMX	ACTIVE	SOIC	D	8	2500	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6572BIMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6574AIM	ACTIVE	SOIC	D	14	55	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6574AIM/NOPB	ACTIVE	SOIC	D	14	55	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6574AIMX	ACTIVE	SOIC	D	14	2500	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6574AIMX/NOPB	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6574BIM	ACTIVE	SOIC	D	14	55	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6574BIM/NOPB	ACTIVE	SOIC	D	14	55	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LMC6574BIMX	ACTIVE	SOIC	D	14	2500	TBD	CU SNPB	Level-1-235C-UNLIM	
LMC6574BIMX/NOPB	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

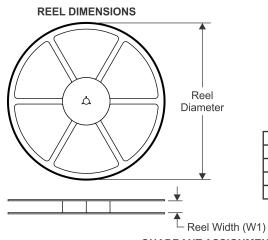
www.ti.com 17-Nov-2012

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

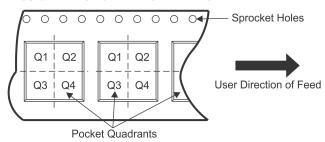
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

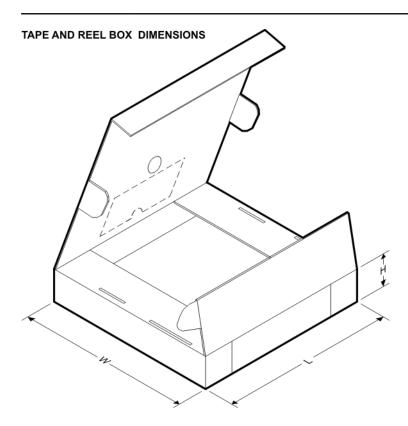
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Nov-2012


TAPE AND REEL INFORMATION

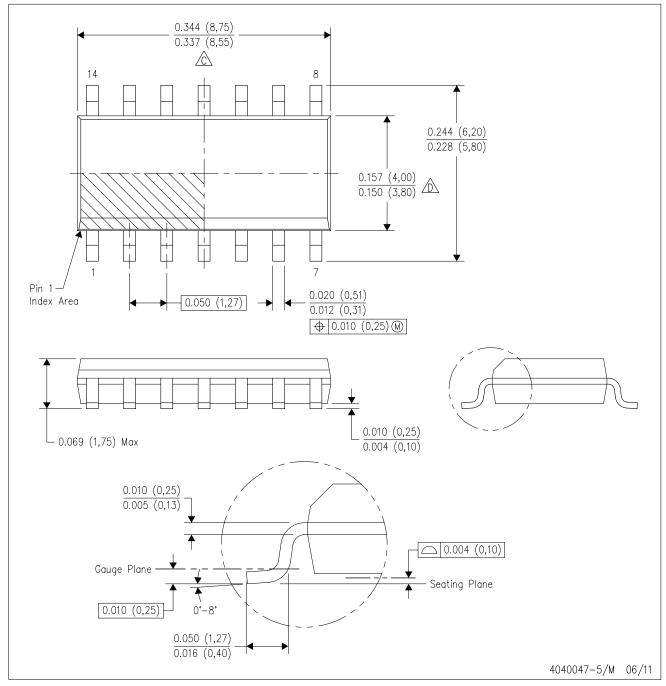
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMC6572AIMX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMC6572AIMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMC6572BIMX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMC6572BIMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMC6574AIMX	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LMC6574AIMX/NOPB	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LMC6574BIMX	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1
LMC6574BIMX/NOPB	SOIC	D	14	2500	330.0	16.4	6.5	9.35	2.3	8.0	16.0	Q1

www.ti.com 17-Nov-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMC6572AIMX	SOIC	D	8	2500	349.0	337.0	45.0
LMC6572AIMX/NOPB	SOIC	D	8	2500	349.0	337.0	45.0
LMC6572BIMX	SOIC	D	8	2500	349.0	337.0	45.0
LMC6572BIMX/NOPB	SOIC	D	8	2500	349.0	337.0	45.0
LMC6574AIMX	SOIC	D	14	2500	349.0	337.0	45.0
LMC6574AIMX/NOPB	SOIC	D	14	2500	349.0	337.0	45.0
LMC6574BIMX	SOIC	D	14	2500	349.0	337.0	45.0
LMC6574BIMX/NOPB	SOIC	D	14	2500	349.0	337.0	45.0

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>