

FEATURES

- Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current
- Guaranteed Offset Voltage 50µV Max.
- Guaranteed Low Drift 1.3µV/°C Max.
- Guaranteed Offset Current
- Guaranteed High Gain 5mA Load Current 1.5 Million Min. 17mA Load Current 0.8 Million Min. Guaranteed Low Supply Current 520µA Max.
- Supply Current can be Reduced by a Factor of 4
- Low Voltage Noise, 0.1Hz to 10Hz 0.55µVp-p Low Current Noise-Better than OP-07 0.07pA/ \sqrt{Hz} at 10Hz
- High Input Impedance 250MΩ Min.
- Guaranteed Minimum Supply Voltage

APPLICATIONS

- Low Power Sample and Hold Circuits
- Battery Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers
- 4mA-20mA Current Loop Transmitters
- Active Filters

Precision, Single Supply Op Amp

LT1006

DESCRIPTION

The LT1006 is the first precision single supply operational amplifier. Its design has been optimized for single supply operation with a full set of specifications at 5V. Specifications at $\pm 15V$ are also provided.

The LT1006 has low offset voltage of 20μ V, drift of 0.2µV/°C, offset current of 120pA, gain of 2.5 million, common-mode rejection of 114dB, and power supply rejection of 126dB.

Although supply current is only 340µA, a novel output stage can source or sink in excess of 20mA while retaining high voltage gain. Common-mode input range includes ground to accommodate low ground-referenced inputs from strain gauges or thermocouples, and output can swing to within a few millivolts of ground. If higher slew rate (in excess of $1V/\mu s$) or micropower operation (supply current down to 90μ A) is required, the operating currents can be modified by connecting an external optional resistor to Pin 8.

For similar single supply precision dual and quad op amps, please see the LT1013/LT1014 data sheet. For micropower dual and quad op amps, please see the LT1078/LT1079 data sheet.

0.5nA Max.

2.7V Min.

Distribution of Input Offset Voltage

2

2-41

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	± 22V
Input Voltage Equal to	o Positive Supply Voltage
	Negative Supply Voltage
Differential Input Voltage	
Output Short Circuit Duration	Indefinite
Operating Temperature Range	
LT1006AM, M	– 55°C to 125°C
LT1006AC, C	0°C to 70°C
Storage Temperature Range	
All Devices	65°C to 150°C
Lead Temperature (Soldering, 10 s	sec) 300°C

ELECTRICAL CHARACTERISTICS $v_s = 5V$, $v_{CM} = 0V$, $v_{OUT} = 1.4V$, $T_A = 25^{\circ}C$, unless otherwise noted.

			Ľ	T1006AM/	AC				
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage			20	50		30	80	μV
∆V _{OS} ∆Time	Lor,g Term Input Offset Voltage Stability			0.4			0.5		μV/Mo
los	Input Offset Current			0.12	0.5		0.15	0.9	nA
I _B	Input Bias Current			9	15		10	25	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz		0.55			0.55		µVр-р
	Input Noise Voltage Density	f _o = 10Hz (Note 3) f _o = 1000Hz (Note 3)		23 22	32 25		23 22	32 25	nV/√Hz nV/√Hz
i _n	Input Noise Current Density	f _o = 10Hz		0.07			0.08		pA/√Hz
<u></u>	Input Resistance Differential Mode Common-Mode	(Note 1)	180	400 5		100	300 4		MΩ GΩ
	Input Voltage Range		3.5 0	3.8 -0.3		3.5 0	3.8 - 0.3		V V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = 0V$ to 3.5V	100	114		97	112		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2V$ to $\pm 18V$, $V_{\rm O} = 0V$	106	126		103	124		dB
A _{VOL}	Large Signal Voltage Gain	$V_0 = 0.03V$ to 4V, $R_L = 10k$ $V_0 = 0.03V$ to 3.5V, $R_L = 2k$	1.0 0.5	2.5 2.0		0.7 0.3	2.0 1.8		V/μV V/μV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, 600Ω to GND Output Low, I _{SINK} = 1mA Output High, No Load Output High, 600Ω to GND	4.0 3.4	15 5 220 4.4 4.0	25 10 350	4.0 3.4	15 5 220 4.4 4.0	25 10 350	mV mV mV V V
SR	Slew Rate		0.25	0.4		0.25	0.4		VIµs
ls	Supply Current	$R_{SET} = \infty$ $R_{SET} = 180k$ Pin 8 to Pin 7 (Note 2)		340 90	520		350 90	570	Αμ Αμ
	Minimum Supply Voltage		2.7			2.7			V

2-42

ELECTRICAL CHARACTERISTICS

 V_S = 5V, 0V, V_{CM} = 0.1V, V_O = 1.4V, - 55°C \leq T_A \leq 125°C, unless otherwise noted.

				LT1006AM						
SYMBOL	PARAMETER	CONDITIONS	CONDITIONS		TYP	MAX	MIN	TYP	MAX	UNITS
V _{os}	Input Offset Voltage		•		40	180		60	250	μV
∆V _{os}	Input Offset Voltage Drift		•		0.2	1.3		0.3	1.8	μV/°C
∆Temp										
los	Input Offset Current		•		0.4	2.0		0.5	4.0	nA
I _B	Input Bias Current		•		13	25		16	40	nA
A _{VOL}	Large Signal Voltage Gain	$V_0 = 0.05V$ to 3.5V, $R_L = 2k$	•	0.25	0.8		0.15	0.7		V/µV
CMRR	Common-Mode Rejection Ratio	$V_{CM} = 0.1V \text{ to } 3.2V$	•	90	103		87	102		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2V$ to $\pm 18V$, $V_{\rm O} = 0V$	•	100	117		97	116		dB
	Maximum Output Voltage Swing	Output Low, 600Ω to GND Output High, 600Ω to GND	•	3.2	6 3.8	15	3.1	6 3.8	18	mV V
Is	Supply Current		•		380	630		400	680	μA

.

2

ELECTRICAL CHARACTERISTICS

 $V_S = 5V$, 0V, $V_{CM} = 0V$, $V_O = 1.4V$, 0°C $\leq T_A \leq$ 70°C, unless otherwise noted.

					LT1006AC			LT1006C			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS	
V _{OS}	Input Offset Voltage	LT1006N8	•		30	110		45 50	160 190	μV 4V	
∆V _{OS} ∆Temp	Input Offset Voltage Drift	LT1006N8	•		0.2	1.3		0.3 0.5	1.8 2.5	µV/°C µV/°C	
los	Input Offset Current		•		0.25	1.2		0.3	2.5	nA	
l _B	Input Bias Current		•		11	20		12	30	nA	
A _{VOL}	Large Signal Voltage Gain	$V_0 = 0.04V$ to 3.5V, $R_L = 2k$	•	0.35	1.3		0.25	1.2		V/µV	
CMRR	Common-Mode Rejection Ratio	$V_{CM} = 0V \text{ to } 3.4V$	•	96	109		92	108		dB	
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2V \text{ to } \pm 18V, V_{\rm O} = 0V$	•	101	120		97	118		dB	
	Maximum Output Voltage Swing	Output Low, 600Ω to GND Output High, 600Ω to GND	•	3.3	6 3.9	13	3.2	6 3.9	13	mV V	
Is	Supply Current		•		350	570		360	620	μA	

The ● denotes the specifications which apply over the full operating temperature range.

Note 1: This parameter is guaranteed by design and is not tested. **Note 2:** Regular operation does not require an external resistor. In order to program the supply current for low power or high speed operation, connect an external resistor from Pin 8 to Pin 7 or from Pin 8 to Pin 4, respectively. Supply current specifications (for $R_{SET} = 180$ k) do not include current in R_{SET} . Note 3: This parameter is tested on a sample basis only. All noise parameters are tested with V_S = \pm 2.5V, V₀ = 0V.

Note 4: Optional offset nulling is accomplished with a potentiometer connected between the trim terminals and the wiper to V⁻. A 10k pot (providing a null range of \pm 6mV) is recommended for minimum drift of nulled offset voltage with temperature. For increased trim resolution and accuracy, two fixed resistors can be used in conjunction with a smaller potentiometer. For example: two 4.7k resistors tied to pins 1 and 5, with a 5000 pot in the

middle, will have a null range of $\pm 150\mu$ V.

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER		LI	1006AM/	NC	1			
		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage			30	100		50	180	μV
los	Input Offset Current			0.1	0.5		0.15	0.9	nA
l _B	Input Bias Current			7.5	12.0		8.0	20.0	nA
<u> </u>	Input Voltage Range		13.5 - 15.0	13.8 15.3		13.5 - 15.0	13.8 15.3		V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = +13.5V, -15V$	100	117		97	116		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2V$ to $\pm 18V, V_{\rm O} = 0V$	106	126		103	124		dB
A _{VOL}	Large Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$ $V_0 = \pm 10V, R_L = 600\Omega$	1.5 0.8	5.0 1.5		1.2 0.5	4.0 1.0		۷/μV ۷/μV
VOUT	Maximum Output Voltage Swing	$R_L = 2k$	± 13	±14		± 12.5	±14		V
SR	Slew Rate	$R_{SET} = \infty$ $R_{SET} = 390\Omega$ Pin 8 to Pin 4	0.25 1.0	0.4 1.2		0.25 1.0	0.4 1.2		V/μs V/μs
ls	Supply Current			360	540		360	600	μA

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

SYMBOL					LT1006AM					
	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage		•		80	320		110	460	μV
∆Vos	Input Offset Voltage Drift		•		0.5	2.2		0.6	2.8	μV/°C
∆Temp	ĺ									
los	Input Offset Current		•		0.2	2.0		0.3	3.0	nA
l _B	Input Bias Current		•		9	18		11	27	nA
AVOL	Large Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	0.5	1.5		0.25	1.0		V/µV
CMRR	Common-Mode Rejection Ratio	$V_{CM} = +13V, -14.9V$	•	97	114		94	113		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2V$ to $\pm 18V$, $V_{\rm O} = 0V$	•	100	117		97	116		dB
	Maximum Output Voltage Swing	$R_L = 2k$	•	± 12	± 13.8		± 11.5	± 13.8		V
Is	Supply Current		٠		400	650		400	750	μA

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, 0°C $\leq T_A \leq 70$ °C, unless otherwise noted.

					LT1006AC			LT1006C				
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS		
V _{OS}	Input Offset Voltage	LT1006N8	•		50	200		75 80	300 330	μV μV		
∆V _{OS} ∆Temp	Input Offset Voltage Drift	LT1006N8	•		0.5	2.2		0.6 0.7	2.8 3.5	µV/°C µV/°C		
los	Input Offset Current		•		0.15	1.0		0.25	2.0	nA		
I _B	Input Bias Current		•		8.0	15		10	23	nA		
A _{VOL}	Large Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	1.0	3.0		0.7	2.5		V/µV		
CMRR	Common-Mode Rejection Ratio	$V_{CM} = 13V, -15V$	•	98	116		94	114		dB		
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2V$ to $\pm 18V, V_{\rm O} = 0V$	•	101	120		97	118		dB		
	Maximum Output Voltage Swing	$R_L = 2k$	•	± 12.5	± 13.9		± 11.5	± 13.8		V		
Is	Supply Current		•		370	600		380	660	μA		

2-44

TYPICAL PERFORMANCE CHARACTERISTICS

10

Ś

-25

0

ω

6

9

TYPICAL PERFORMANCE CHARACTERISTICS

2-46

2

TYPICAL PERFORMANCE CHARACTERISTICS Power Supply Rejection Ratio vs Gain, Phase vs Frequency Frequency **Voltage Gain vs Frequency** 140 80 120 $T_A = 25^{\circ}C$ $C_L = 10pF$ $T_{A} = 25^{\circ}C$ $V_{CM} = 0V$ $C_{L} = 10pF$ 120 20 100 POWER SUPPLY REJECTION RATIO (dB) 07 09 09 08 00 1111 120 (DEGREES) 140 160 100 IASE NEGATIVE POSITIVE VOLTAGE GAIN (dB) VOLTAGE GAIN (dB) SUPPLY SUPPLY 80 10 15V GAIN 60 V_S=5V.0V $V_{\rm S} = \pm 15V$ 40 0 5V 20 $V_S = \pm 15V + 1Vp-p$ SINE WAVE TA=25°C - 10 0 - 20 0 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 100 1k 10k FREQUENCY (Hz) 0.3 10 0.1 100k 1M 0.1 3 1 FREQUENCY (MHz) 3 1 10 0.01 0.1 1 Large Signal Transient Response, $V_S = 5V, 0V$ Large Signal Transient Response, $V_S = \pm 15V$ Large Transient Response, $V_S = 5V, 0V$ 4V 4٧ 5V/DIV 2V 2V ٥V 0٧ 10µs/DIV 10µs/DIV 50µs/DIV

 $A_V = 1$ $R_L = 4.7k$ TO GROUND INPUT = 0V TO 3.8V

Small Signal Transient Response, $V_{CC} = \pm 2.5V$ to $\pm 15V$

2µs/DIV

Small Signal Transient Response, $V_S = 5V, \tilde{0}V$

20µs/DIV

 $\begin{array}{l} A_V = 1 \\ C_L = 10 pF \\ R_L = 600 \Omega \text{ TO GND} \end{array}$ INPUT = 0V TO 100mV PULSE

APPLICATIONS INFORMATION

The LT1006 is fully specified for single supply operation, i.e., when the negative supply is 0V. Input common-mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1006 has specific circuitry which addresses these problems.

At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420:

a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V⁻ terminal) to the input. This can destroy the unit. On the LT1006, the 400 Ω resistors, in series with the input (see schematic diagram), protect the devices even when the input is 5V below ground.

b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4)

and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1006's output does not reverse, as illustrated below, even when the inputs are at -1.5V.

At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1006's all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated.

In dual supply operations, the output stage is crossover distortion-free.

Since the output cannot go exactly to ground, but can only approach ground to within a few millivolts, care should be exercised to ensure that the output is not saturated. For example, a 1mV input signal will cause the amplifier to set up in its linear region in the gain 100 configuration shown below, but is not enough to make the amplifier function properly in the voltage follower mode.

APPLICATIONS INFORMATION

In automated production testing the output is forced to 1.4V by the test loop; offset voltage is measured with a common-mode voltage of zero and the negative supply at zero (Pin 4). Without the test loop, these exact conditions cannot be achieved. The test circuit shown ensures that the output will never saturate even with worst-case offset voltages (-250μ V over the -55° C to 125° C range). The effective common-mode input is 0.3V with respect to the negative supply. As indicated by the common-mode rejection specifications the difference is only a few microvolts between the two methods of offset voltage measurement.

Low Supply Operation

The minimum guaranteed supply voltage for proper operation of the LT1006 is 2.7V. Typical supply current at this voltage is 320μ A, therefore power dissipation is only 860μ W.

Noise Testing

For application information on noise testing and calculations, please see the LT1007 or LT1028 data sheet.

Supply Current Programming

Connecting an optional external resistor to Pin 8 changes the biasing of the LT1006 in order to increase its speed or to decrease its power consumption. If higher slew rate is required, connect the external resistor from Pin 8 to Pin 4 [see performance curves for Increasing Slew Rate (R_{SET} to V⁻)]. For lower power consumption, inject a current into Pin 8 (which is approximately 60mV above V⁻) as shown on the Reducing Power Dissipation plot. This can be accomplished by connecting R_{SET} to the positive supply, or to save additional power, by obtaining the injected current from a low voltage battery.

Comparator Applications

The single supply operation of the LT1006 and its ability to swing close to ground while sinking current lends itself to use as a precision comparator with TTL compatible output.

2

 $V_S = 5V, 0V$ $50\mu s/DIV$

 $V_{\rm S} = 5V, 0V$ $50\mu s/DIV$

TYPICAL APPLICATIONS

Platinum RTD Signal Conditioner with Curvature Correction

Voltage Controlled Current Source with Ground Referred Input and Output

.

TYPICAL APPLICATIONS

Micropower Thermocouple Signal Conditioner with Cold Junction Compensation

.

Linear Thermometer

± 5V Precision Instrumentation Amplifier

2

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

