
20 Amp "Current Booster" for PT7708 Integrated Switching Regulator

(Revised 6/30/2000)

SLTS085

Description

The PT7742 is a 20 Amp "Current Booster" for the PT7708 housed in the same 27-pin SIP package.

Multiple PT7742 boosters will operate in parallel with one PT7708 product, boosting output current in increments of 20A. Combinations of a PT7708 regulator and PT7742 current boosters can supply power for virtually any multiple mega-processor application.

A PT7742 current booster adds a

Function

GND GND

GND

GND

GND

GND

 V_{out}

 V_{out}

 V_{out}

 V_{out}

V_{out}
Do not connect
Master Sync In

parallel output stage that is driven directly by the regulator. This allows the system to run in perfect synchronization to provide a low noise solution.

The PT7742 only operates in combination with a PT7708 series regulator, and is not a stand-alone product. Please refer to the PT7708 data sheet for the performance specifications.

The booster uses the same 27-pin case and has the same package options as its companion regulator.

Features

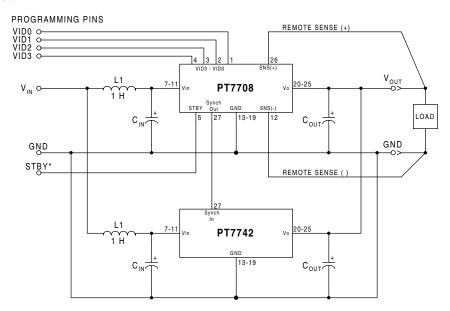
- 20A Current Boost
- Tracks Vo of a PT7708
- High Efficiency
- Input Voltage Range: 3.1V to 3.6V
- Synchronized with PT7708
- 27-pin SIP Package
- Connect up to 2 in Parallel for 60 Amps

Pin-Out Information

	Pin	Function	Pin
	1	Do not connect	14
	2	Do not connect	15
	3	Do not connect	16
	4	Do not connect	17
	5	Do not connect	18
	6	Do not connect	19
	7	Vin	20
ľ	8	V_{in}	21
	9	Vin	22
	10	Vin	23
	11	V_{in}	24
	12	Do not connect	25
	13	GND	26

Ordering Information

PT7742


(For dimensions and PC Board layout, see Package Styles 800 and 810.)

PT Series Suffix (PT1234X)

Case/Pin

Connguration				
Vertical Through-Hole	N			
Horizontal Through-Hole	Α			
Horizontal Surface Mount	С			

Standard Application

External Capacitors: The PT7742 requires a minimum ouput capacitance of 330µF for proper operation. The PT7742 also requires an input capacitance of 1500µF, which must be rated for a minimum of 1.4Arms of ripple current. For transient or dynamic load applications additional capacitance may be required. For more information refer to the application note regarding capacitor selection for this product.

Input Filter: An input filter inductor is optional for most applications. The inductor must be sized to handle 20ADC with a typical value of 1µH.

PT7708/PT7709, PT7742/PT7743

Capacitor Recommendations for the PT7708/09 Regulators and PT7742/43 Current Boosters

Input Capacitors

The recommended input capacitance is determined by 1.4 ampere minimum ripple current rating and $1500\mu F$ minimum capacitance. Capacitors listed below must be rated for a minimum of 2x the input voltage with +5V operation. Ripple current and $\leq\!100m\Omega$ Equivalent Series Resistance (ESR) values are the major considerations along with temperature when selecting the proper capacitor.

Output Capacitors

The minimum required output capacitance is $330\mu F$ with a maximum ESR less than or equal to $100m\Omega.$ Failure to observe this requirement may lead to regulator instability or oscillation. Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz, but excellent low frequency transient response. Above the ripple frequency ceramic decoupling capacitors are necessary to improve the transient response and reduce any microprocessor high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in the Table 1 below.

Tantalum Characteristics

Tantalum capacitors with a minimum 10V rating are recommended on the output bus, but only the AVX TPS Series, Sprague 594/595 Series, or Kemet T495/T510 Series. The AVX TPS Series, Sprague Series or Kemet Series capacitors are specified over other types due to their higher surge current, excellent power dissipation and ripple current ratings. As an example, the TAJ Series by AVX is not recommended. This series exhibits considerably higher ESR, reduced power dissipation and lower ripple current capability. The TAJ Series is a less reliable compared to the TPS series when determining power dissipation capability.

Capacitor Table

Table 1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The suggested minimum quantities per regulator for both the input and output buses are identified.

This is not an extensive capacitor list. The table below is a selection guide for input and output capacitors. Other capacitor vendors are available with comparable RMS ripple current rating and ESR (Equivalent Series Resistance at 100kHz). These critical parameters are necessary to insure both optimum regulator performance and long capacitor life.

Table 1 Capacitors Characteristic Data

Capacitor Vendor/ Series	Capacitor Characteristics				Quantity			
	Working Voltage	Value(µF)	(ESR) Equivalent Series Resistance	105°C Maximum Ripple Current(Irms)	Physical Size(mm)	Input Bus	Output Bus	Vendor Number
Panasonic FC	16V 35V	2200 330	0.038Ω 0.065Ω	2000mA 1205mA	18x16.5 12.5x16.5	1	1 1	EEVFC1C222N EEVFC1V331LQ
Surface Mtg FA	10V 16V	680 1800	0.090Ω 0.032Ω	755mA 2000mA	10x12.5 18x15	1	1 1	EEUFA1A681 EEUFA1C182A
United Chemi -Con LFVSeries	25V 16V 16V	330 2200 470	$\begin{array}{c} 0.084\Omega \\ 0.038\Omega \\ 0.084\Omega/2 = 042\Omega \end{array}$	825mA 1630mA 825mA x2	10x16 16x20 10x16	1	1 1 1	LXV25VB331M10X16LL LXV16VB222M16X20LL LXV16VB471M10X16LL
Nichicon PL Series PM Series	10V 10V 25V	680 1800 330	0.090Ω 0.044Ω 0.095Ω	770mA 1420mA 750mA	10x15 16x15 10x15	1	1 1 1	UPL1A681MHH6 UPL1A182MHH6 UPL1E331MPH6
Oscon SS SV	10V 10V	330 330	0.025W/4=0.006Ω 0.020/4=0.005Ω	>9800mA >9800mA	10x10.5 10.3x12.6	4 4	N/R (Note)	10SS330M 10SV330M(Sufvace Mtg
AVX Tanatalum TPS- Series	10V 10V	330 330	0.100/5=20Ω 0.060Ω	3500mA 1826mA	7.3Lx 4.3Wx 4.1H	5 5	1 1	TPSV337M010R0100 TPSV337M010R0060
Sprague Tantalum	10V	330	0.045W/4=0.011Ω	>4500mA	7.3L x	5	1	594D337X0010R2T
595D/594D	10V	680	0.090Ω	>1660mA	5.7W x 4.0H	2	1	Surface Mount 595D687X0010R2T
Kemet	10V	330	0.035Ω	2000mA	4.3Wx7.3L	5	1	510X337M010AS
Tantalum T510/T495 Series	10V	220	0.070Ω/2=0.035Ω	>2000mA	x4.0H	6	2	T495X227M010AS Surface Mount
Sanyo Poscap TPB	10V	220	0.040Ω	3000mA	7.2L x 4.3W x 3.1H	6	2	10TPB220M Surface Mount

Note: (N/R) is not recommended for this application, due to extremely low Equivalent Series Resistance (ESR)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated