NEC

PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT

µPD65977S1-xxx-B6

SYSTEM-ON-CHIP LITE GATE ARRAY WITH ARM7TDMI SUBSYSTEM HARDWARE

DESCRIPTION

The System-on-Chip Lite ("SoCLite") is based on standard ASIC technology and consists of two blocks: an ARM7TDMI based subsystem and a sea-of-gates area. The ARM subsystem is fully designed and verified as a supermacro. It frees the user from the task of developing a complete RISC computer system. The sea-of-gates area allows the user to implement custom logic or special peripheral functions.

The SoCLite is designed for embedded control applications. To maintain flexibility, SoCLite is not realized as an ASSP (Application Specific Standard Product), this means that it can be used for a wide range of different applications. Once the customer functions are implemented into the sea-of-gates, it becomes a custom SoC.

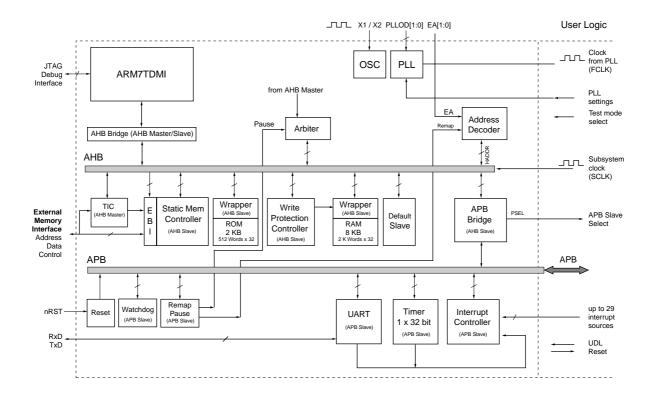
The ARM7TDMI based subsystem of SoCLite offers a basic combination of general purpose peripheral functions, like a serial communication interface (UART), Timer (32-bit), Interrupt Controller, Watchdog, internal RAM and ROM (only as boot-ROM).

Functions in detail are described in the following user's manual. Be sure to read this manual when you design your systems.

System-on-Chip Lite User's Manual - Hardware : A15402EE1V0UM00

FEATURES

- 32-bit RISC CPU with Von Neumann Architecture
- Internal 2 Kbyte ROM (boot ROM only)
- Internal 8 Kbyte RAM
- Serial Interface
- UART mode: 1 channel
- Timer
 - 32-bit timer with load register: 1 channel
 Watchdog timer: 1 channel
- Interrupt Controller with 32 prioritized interrupt sources
- External Bus Interface (32-bit data / 26-bit address
- bus)On-chip debug capability via JTAG

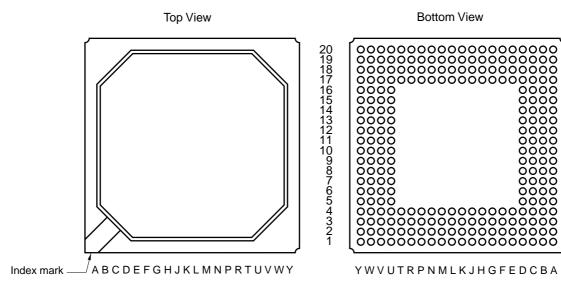

- Built-in power saving mode
- Power supply voltage range: 3.0 V \leq V_{DD} \leq 3.6 V
- Frequency range: up to 35 MHz for ARM subsystem
- Crystal frequency range: 4 MHz ≤ f_{CRYSTAL} ≤ 16 MHz
- Built-in clock oscillator circuit with internal PLL
 PLL output: 6.25 MHz to 115 MHz
- Temperature range: -40 °C to +85 °C
- Package: 256 Plastic BGA, (27 x 27 mm)
- Process: CMOS-9HD
- Sea-of-Gates: 190K raw gates for user defined logic

ORDERING INFORMATION

Device	Part Number	Package	ROM	RAM	Oper. Freq.
SoCLite	µPD65977S1-xxx-B6	256 PBGA 27 x 27 mm	2 K boot ROM	8 K	35 MHz

The information contained in this document is released in advance of the production cycle for the device. The parameters for the device may change before final production, or NEC Corporation may, at its own discretion, withdraw the device prior to production.

INTERNAL BLOCK DIAGRAM



PIN IDENTIFICATION

XADDR0 to XADDR25	: Memory Address Bus	AV _{DD}	: Analog Power Supply for PLL
XDATA0 to XDATA31	: Memory Data Bus	DV_DD	: Digital Power Supply for PLL
nXCS0 to nXCS7	: Memory Chip (Bank) Select	AV _{SS}	: Analog Ground for PLL
nXBLS0 to nXBLS3	: Memory Byte Lane Select	DV_SS	: Digital Ground for PLL
nXOE	: Memory Output Enable	V_{DD0} to V_{DD11}	: Power Supply
nXWEN	: Memory Read / Write	$\rm V_{SS0}$ to $\rm V_{SS12}$: Ground Power Supply
nXWAIT	: Memory Wait	IC1	: Internal connection
RXD	: Receive Data Input	TEST	: Internal connection
TXD	: Transmit Data Output		
X1	: Crystal		
X2	: Crystal		
nRST	: Reset		
EA0	Enable signal for external or internal boot memory		
EA1	. Enable signal for external or internal boot memory		
DBGEN	: Debug enable		
PLLOD0	. Frequency range of PLL output		
PLLOD1	. Frequency range of PLL output		
JTAG_TDI	: JTAG data in		
JTAG_TDO	: JTAG data out		
JTAG_TCK	: JTAG clock		
JTAG_TMS	: JTAG mode select		
JTAG_TRST	: JTAG reset		
TCLK	: Clock for test purposes		

PIN CONFIGURATION

• 256-Pin Plastic BGA (27 mm × 27 mm)

(1	/3)
· · ·	· - /

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
A1	V _{SS0}	D5	nXCS5	L1		U17	V _{SS7}
A2	XDATA31	D6	V _{DD11}	L2		U18	
A3	XDATA29	D7	nXCS0	L3		U19	
A4	XDATA27	D8	V _{SS12}	L4		U20	
A5	nXCS2	D9	XADDR22	L17	V _{DD7}	V1	
A6	XDATA25	D10	XADDR20	L18	IC1 ^{Note1}	V2	
A7	XDATA24	D11	V _{DD10}	L19	nXBLS1	V3	
A8	XDATA22	D12	XADDR16	L20	nXBLS0	V4	
A9	XDATA20	D13	V _{SS11}	M1		V5	
A10	XDATA18	D14	PLLOD0	M2		V6	
A11	XDATA17	D15	V _{DD9}	M3		V7	
A12	XDATA15	D16	IC1 ^{Note1}	M4		V8	
A13	XDATA14	D17	V _{SS10}	M17	JTAG_TDO	V9	
A14	XDATA13	D18	XADDR10	M18	JTAG_TDI	V10	
A15	XDATA12	D19	XADDR9	M19	TXD	V11	
A16	IC1 ^{Note1}	D20	XDATA8	M20	RXD	V12	

SoCLite

(2/3)

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
A17	AV _{SS}	E1		N1		V13	
A18	DV _{DD}	E2		N2		V14	
A19	X1	E3		N3		V15	
A20	nRST	E4		N4	V _{SS3}	V16	
B1		E17	XADDR8	N17	V _{SS8}	V17	
B2	TCLK	E18	XADDR7	N18	JTAG_TRST	V18	
B3	XDATA30	E19	XDATA7	N19	JTAG_TMS	V19	
B4	XDATA28	E20	XDATA6	N20	JTAG_TCK	V20	
B5	nXCS3	F1		P1		W1	
B6	XDATA26	F2		P2		W2	
B7	XADDR24	F3		P3		W3	
B8	XDATA23	F4	V _{DD0}	P4		W4	
B9	XDATA21	F17	V _{DD8}	P17		W5	
B10	XDATA19	F18	XADDR6	P18		W6	
B11	XADDR17	F19	XADDR5	P19		W7	
B12	XDATA16	F20	XDATA5	P20		W8	
B13	XADDR13	G1		R1		W9	
B14	XADDR11	G2		R2		W10	
B15	PLLOD1	G3		R3		W11	
B16	DV_{SS}	G4		R4	V _{DD2}	W12	
B17	EA1	G17	XADDR4	R17	V _{DD6}	W13	
B18	X2	G18	XADDR3	R18		W14	
B19	TEST ^{Note2}	G19	XDATA4	R19		W15	
B20	XDATA11	G20	XDATA3	R20		W16	
C1		H1		T1		W17	
C2		H2		T2		W18	
C3	nXCS7	H3		Т3		W19	
C4	nXCS6	H4	V _{SS2}	T4		W20	
C5	nXCS4	H17	V _{SS9}	T17		Y1	
C6	nXCS1	H18	XADDR2	T18		Y2	
C7	XADDR25	H19	XDATA2	T19		Y3	
C8	XADDR23	H20	XDATA1	T20		Y4	
C9	XADDR21	J1		U1		Y5	

NEC

(3/3)

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
C10	XADDR19	J2		U2		Y6	
C11	XADDR18	J3		U3		Y7	
C12	XADDR15	J4		U4	V _{SS4}	Y8	
C13	XADDR14	J17	XADDR1	U5		Y9	
C14	XADDR12	J18	XADDR0	U6	V _{DD3}	Y10	
C15	IC1 ^{Note1}	J19	XDATA0	U7		Y11	
C16	AV _{DD}	J20	nXWAIT	U8	V _{SS5}	Y12	
C17	EA0	K1		U9		Y13	
C18	DBGEN	K2		U10	V _{DD4}	Y14	
C19	XDATA10	КЗ		U11		Y15	
C20	XDATA9	K4	V _{DD1}	U12		Y16	
D1		K17	nXOE	U13	V _{SS6}	Y17	
D2		K18	nXWEN	U14		Y18	
D3		K19	nXBLS3	U15	V _{DD5}	Y19	
D4	V _{SS1}	K20	nXBLS2	U16		Y20	

Notes: 1. Not connected, leave pin open.

2. For internal use only, must be pulled low always.

Remark: All free pins are available for UDL.

Table of Contents

		INT	ERNAL BLOCK DIAGRAM	 	. 3
		PIN		 	. 4
		PIN	CONFIGURATION	 • • • •	. 5
1.			FUNCTIONS		
	1.1		of Pin Functions		
	1.2	Туре	s of Pin I/O Circuit and Recommended Connection of Pins	 	. 14
2.		ELE	ECTRICAL SPECIFICATIONS	 	16
	2.1	Abso	lute Maximum Ratings	 	. 16
	2.2	Oper	ating Conditions	 	. 16
	2.3	Oscil	llator Characteristics	 	. 17
	2.4	PLL (Characteristics	 	. 22
	2.5	DC C	haracteristics	 	. 23
	2.6	AC C	haracteristics	 	. 24
		2.6.1	General	 	. 24
		2.6.2	Clock Timing	 	. 25
		2.6.3	APB Bus Timing	 	. 26
		2.6.4	External Memory Bus Timing		
		2.6.5	Reset Timing.	 	. 34
		2.6.6	Interrupt Timing		
3.		PAG	CKAGE DRAWING	 	37
4.		REC	COMMENDED SOLDERING CONDITIONS	 	38

List of Figures

Figure 2-1:	Crystal or Ceramic Resonator Connection	
Figure 2-2:	External Clock Input	
Figure 2-3:	Examples of Incorrect Resonator Connection (1/2)	20
Figure 2-4:	AC Test Input Measurement Points (external signals)	24
Figure 2-5:	AC Test Output Measurement Points (external signals)	24
Figure 2-6:	AC Test Load Condition	24
Figure 2-7:	Clock Waveforms	
Figure 2-8:	Clock Structure	
Figure 2-9:	APB Read Cycle	
Figure 2-10:	APB Write Cycle	
Figure 2-11:	External Memory Bus Single Read Cycle	30
Figure 2-12:	External Memory Bus Sequential Read Cycle	
Figure 2-13:	External Memory Bus Page Mode Read Cycle (32-bit wide)	
Figure 2-14:	External Memory Bus Single Write Cycle	32
Figure 2-15:	External Memory Bus Single Write Cycle to different Memory Banks	32
Figure 2-16:	External Memory Bus Sequential Write Cycle	33
Figure 2-17:	External Memory Bus Turn Around Cycle	33
Figure 2-18:	Reset Cycle	
Figure 2-19:	Interrupt Cycle	
Figure 3-1:	Package Drawing	

List of Tables

Table 1-1:	External Pins	11
Table 1-2:	Internal Pins between ARM subsystem and UDL	13
Table 1-3:	Types of Pin I/O Circuit and Recommended Connection of Pins	14
Table 2-1:	Absolute Maximum Ratings	16
Table 2-2:	Operating Conditions	16
Table 2-3:	Oscillator Characteristics (TA = -40 to +85°C, VDD = 3.3 V ± 0.3 V)	
Table 2-4:	Oscillator Characteristics (TA = -40 to +85°C, VDD = 3.3 V ± 0.3 V)	18
Table 2-5:	PLL Recommended Operating Range (TA = -40 to +85°C, AVDD = 3.3 V ± 0.3 V)	22
Table 2-6:	PLL Specification (TA = -40 to +85°C, AVDD = 3.3 V ± 0.3 V)	22
Table 2-7:	DC Characteristics (TA = -40 to +85°C; VDD, DVDD, AVDD = $3.3 V \pm 0.3 V$)	23
Table 2-8:	Conditions for AC Characteristics	24
Table 2-9:	Clock AC Characteristics ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 3.3$ V ± 0.3 V)	25
Table 2-10:	APB Bus AC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 3.3 V \pm 0.3 V)	26
Table 2-11:	External Memory Bus AC Characteristics (TA = -40 to +85°C, VDD = $3.3 V \pm 0.3 V$).	29
Table 2-12:	Reset AC Characteristics (TA = -40 to +85°C, VDD = 3.3 V ± 0.3 V)	34
Table 2-13:	Interrupt AC Characteristics (TA = -40 to +85°C, VDD = 3.3 V ± 0.3 V)	36
Table 4-1:	Soldering Conditions	38

1. PIN FUNCTIONS

1.1 List of Pin Functions

(1) External Pins

Pin Name	I/O	Function	Interface	
nXOE	Output	Data output enable		
nXWEN	Output	Write enable signal output		
nXWAIT	Input	Control signal input to insert wait in bus cycle		
nXBLS0				
nXBLS1	Output	Byte lane select signal output		
nXBLS2	Output	Byte lane select signal output		
nXBLS3				
nXCS0				
nXCS1			External Bus	
nXCS2			Interface	
nXCS3	Output	Chip select signal output		
nXCS4	Output			
nXCS5				
nXCS6				
nXCS7				
XADDR0 to XADDR25 Output		26-bit address bus for external memory		
XDATA0 to XDATA31	I/O	32-bit data bus for external memory		
RXD	Input	Serial receive data input	Serial	
TXD	Output	Serial transmit data output	Interface	
X1	Input	Connects the crystal resonator for system clock oscillation.	Oscillator	
X2	-	In the case of an external source supplying the clock, it is input to X2 (direct clock input).	Interface	
TCLK ^{Note 1}	Input	Clock input for test purpose		
nRST	Input	System reset input		
EA0 ^{Note 4}	Input	Enable external best memory		
EA1 ^{Note 4}	Input	Enable external boot memory	System	
DBGEN ^{Note 4}	Input	Debug enable input	Configuration	
PLLOD0 ^{Note 4}	Input	Frequency of PLL output clock (FCLK)	Interface	
PLLOD1 ^{Note 4}	Input			
IC1 ^{Note 2}	-	Internal connected		
TEST ^{Note 3}	-	Internal connection		

Table 1-1: External Pins (1/2)

Pin Name	I/O	Function	Interface
AV _{DD}	Input	Positive analog power supply for PLL	
DV _{DD}	Input	Positive digital power supply for PLL	
AV _{SS}	Input	Analog ground potential for PLL	Power
DV _{SS} Input		Digital ground potential for PLL	Supply Interface
V _{DD0} to V _{DD11} Input		Positive power supply	
V _{SS0} to V _{SS12} Input		Ground potential	
JTAG_TDI	Input	Data in for debugging or boundary scan	
JTAG_TDO	Output	Data out for debugging or boundary scan	Debug and
JTAG_TCK Input		Clock input for debugging or boundary scan	Boundary Scan
JTAG_TMS Input		Mode select input for debugging or boundary scan	Interface
JTAG_TRST	Input	Reset input for debugging or boundary scan	

Table 1-1: External Pins (2/2)

Notes: 1. Must be kept low in normal operating mode.

- 2. Not connected, leave pin open.
- 3. Must be pulled low always.
- 4. Must be kept unchanged during operation.

(2) Internal Pins between ARM subsystem and UDL

Pin Name	Direction	Function	Interface
PRESETn	to UDL	APB bus reset signal	
PSELUDL	to UDL	APB bus slave select signal	
PENABLE	to UDL	APB bus strobe signal	
PWRITE	to UDL	APB bus write signal	
PADDR0 to PADDR28	to UDL	APB address bus	APB Bus Interface
PRDATA0 to PRDATA31	from UDL	APB read data bus	
PWDATA0 to PWDATA31	to UDL	APB write data bus	_
FCLK	to UDL	PLL output frequency	Clock
SCLK	from UDL	Clock for ARM subsystem	Interface
INT0 to INT28	from UDL	Interrupt lines to interrupt controller	
nRESUDL	from UDL	Reset signal from UDL to reset controller	Interrupt/Exception
nFIRQ	from UDL	FIQ signal directly routed to ARM CPU	
PLL_M0 to PLL_M4	from UDL	M value for M-counter of PLL	PLL
PLL_N0 to PLL_N6	from UDL	N value for N-counter of PLL	Configuration
PLL_S0 to PLL_S1	from UDL	VCO frequency range selection	
TARMSS	from UDL	Set ARM subsystem into test mode	
BS_TCK			
BS_TMS	to UDL	Boundary scan signals for UDL	Boundary Scan Interface
BS_TRST			

 Table 1-2:
 Internal Pins between ARM subsystem and UDL

1.2 Types of Pin I/O Circuit and Recommended Connection of Pins

Pin	I/O Buffer Type ^{Note}	Recommended Connection		
nXOE	D) (00			
nXWEN	BV08	Output: Leave open (if unused)		
nXWAIT	FIV1	Input: Connect to V _{DD} via a resistor (if unused)		
nXBLS0	D)/00			
nXBLS1	BV08	Output: Leave open (if unused)		
nXBLS2	BW03	Output: Leave open (if unused)		
nXBLS3	Bw03			
nXCS0				
nXCS1				
nXCS2				
nXCS3				
nXCS4	BV08	Output: Leave open (if unused)		
nXCS5				
nXCS6				
nXCS7				
XADDR0 to XADDR25				
XDATA0 to XDATA31	BW03	Input: Connect to V _{DD} or V _{SS} via a resistor (if unused) Output: Leave open (if unused)		
RXD	FIV1	Input: Connect to V_{DD} or V_{SS} via a resistor (if unused)		
TXD	BV08	Output: Leave open (if unused)		
X1	OSI1 / OSO1	Connect to V_{SS} (when external clock is input to X2 pin)		
X2	031170301			
TCLK	FIV1	Must be kept low in normal operation mode		
nRST	FIF1	Schmitt-Trigger input		
EA0	FIV1	Must be set to an appropriate value to guarantee		
EA1		correct operation		
DBGEN	FDV1	internal pull-down (50K)		
PLLOD0		Must be set to an appropriate value to guarantee		
PLLOD1	FIV1	correct operation		
JTAG_TDI		Connect to V _{DD} (pull-up)		
JTAG_TDO	BV08			
JTAG_TCK				
JTAG_TMS	FIV1	Connect to V _{DD} (pull-up)		
JTAG_TRST				
AV _{DD}	-	Default power supply (analog) for PLL		
DV _{DD}	-	Default power supply (digital) for PLL		
AV _{SS}	-	Default ground (analog) for PLL		

 Table 1-3:
 Types of Pin I/O Circuit and Recommended Connection of Pins (1/2)

Table 1-3:	Types of Pin I/O Circuit and Recommended Connection of Pins (2/2)
------------	---

Pin	I/O Buffer Type ^{Note}	Recommended Connection
DV _{SS}	-	Default ground (digital) for PLL
V _{DD0} to V _{DD11}	-	Default power supply
$\rm V_{SS0}$ to $\rm V_{SS12}$	-	Default ground

Note: For buffer type information, please refer to document "Block Library CMOS-9HD Family, EA-9HD Family" (Document No. A13052EJ6V0BL00).

2. ELECTRICAL SPECIFICATIONS

2.1 Absolute Maximum Ratings

Parar	neter	Symbol	Test Conditions	Ratings	Unit
Supply voltage		V_{DD} , DV_{DD} , AV_{DD}		-0.5 ~ +4.6	V
Input voltage	except X1	VI	$V_{\rm I} < V_{\rm DD} + 3.0 \ {\rm V}$	-0.5 ~ +6.6	V
Output voltage	except X2	V _O	$V_{O} < V_{DD} + 3.0 V$	-0.5 ~ +6.6	V
Output current	except X2	Ι _Ο		30	mA
Operating ambient	temperature	T _A		-40 ~ +85	°C
Storage temperatu	re	T _{STG}		-65 ~ +150	°C

Table 2-1:	Absolute Maximu	m Ratings
		in naings

- Cautions: 1. Do not directly connect output (or I/O) pins of IC products to each other, or to V_{DD} , V_{CC} , and GND. Open drain pins or open collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance.

2.2 Operating Conditions

Clock Input	Operating Ambient Temperature (T _A)	Supply Voltage (V _{DD})	Operation Clock Frequency	
Oscillator Input (crystal frequency range) ^{Note 2}	-40 ~ +85°C	3.0 V ~ 3.6 V	4 MHz \leq f _{Crystal} \leq 16 MHz	
ARM Subsystem Input (SCLK frequency range)			f _{SCLK} ≤ 35 MHz ^{Note 1}	

Table 2-2: Operating Conditions

Notes: 1. ARM subsystem operating frequency, as derived from PLL output clock (FCLK).

2. Input frequency for oscillator at external pins X1 and X2 or external pin X2, if a direct clock source is used.

2.3 Oscillator Characteristics

(a) Crystal or Ceramic Resonator Connection

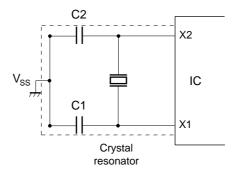
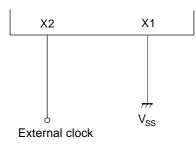


Table 2-3: Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 3.3$ V ± 0.3 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation frequency	fxx	V_{DD} = 3.0 V to 3.6 V	4		16	MHz
Oscillation stabilization time	t _{OST}			10		ms


Note: The value of the oscillation stabilization time is just a typical value. It greatly depends on the application (external components, PCB layout).

Caution: Ensure that the duty cycle of oscillation waveform is between 45% and 55%.

Remark: PCB layout recommendations are listed in sub-chapter (c).

(b) External Clock Input

The external clock shall be connected to the X2 output while clamping X1 to ground (V_{SS}).

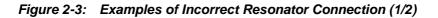
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fxx	V_{DD} = 3.0 V to 3.6 V	4		16	MHz

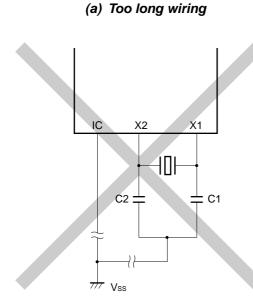
(c) PCB layout recommendations for crystal oscillator wiring

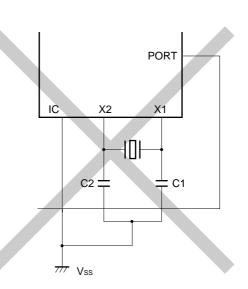
Since crystal oscillators are very EMI sensitive, it is strongly recommended to design the PCB board for the oscillator part very carefully according to the below listed recommendations.

The oscillator consists of an inverter inside SOClite ASIC that is connected to a quartz-crystal. The inverter is bridged by an internal feedback resistor. The inverter within SOClite ASIC has a high input impedance (X1 pin) and high output impedance (X2 pin). The output pin X2 has a low drive capability in order not to overdrive or damage the crystal. Internally, the oscillator signal is fed via a buffer chain to a 2:1 pre-scaler inside the PLL. The pre-scaler divides the oscillator input by two, which ensures a stable 50% duty cycle clock as PLL input signal.

In case of a poor PCB layout, noise injection into the on-chip oscillator may cause unintended noise spikes at the output of the internal oscillator buffer stage. The spiky signal will be divided by two and then further be filtered by the PLL characteristics. In case of an injected noise spike, a slowly decaying frequency disturbance at the PLL output would be observable.

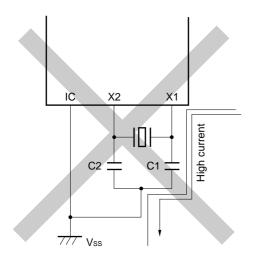


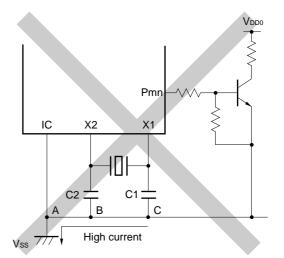

The PCB layout recommendations for the oscillator part are as follows:


- Ground path distance between the capacitors C1 and C2 and the ground pin V_{SS10} should be as short as possible.
- The oscillator must not share its ground trace with other signals (please refer to Figure 2-3 d).
- Place the crystal resonator and the capacitors C1 and C2 as close as possible to the X1 and X2 pins.
- Keep the wiring lengths as short as possible.
- Ensure that no other signals cross or/and accompany the crystal wiring (please refer to Figure 2-3 b/c).
- Enclose the oscillator circuitry with a ground guard ring as much as possible. Even a very thin guard ring due to PCB routing restrictions, is much better than having no guard ring at all.
- Apply an as complete as possible ground shielding to X1 and X2 oscillator signals. Shielding tracks on both sides of X1 and X2 oscillator signals must be connected to the ground plane at both ends and at least every 5 to 10 mm. Further, a local ground plane on the adjacent layers may be required.
- Keep any fast switching and/or high fluctuating current flows away from the oscillator lines.
- Do not fetch signals directly from the oscillator (please refer to Figure 2-3 e)
- Choose the capacitance C2 attached to X2 pin as big as possible. A value of at least 68 pF is strongly recommended. It may be necessary to use a dedicated crystal for achieving the target center oscillation frequency. Please contact your crystal vendor for that purpose for further details.
- As starting value, C1 should be chosen equal to C2. It must be ensured by appropriate measurements that the X1 input signal does not exceed the maximum ratings. The input level can be decreased, by increasing C1 appropriately.
- Do not insert a series resistor Rs in your final PCB-layout.

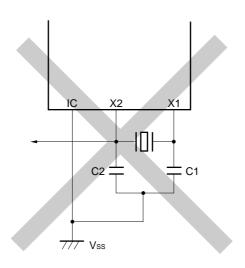
NEC strongly recommends to prove the effectiveness of these measures after E/S silicon availability in an early stage of the project.

If your system is sensitive to sporadic frequency disturbances due to injected noise, we recommend to use an external crystal oscillator instead, that is hooked up to the X2 output pin, while X1 input clamped to GND (see Figure 2-2). Keep the wiring between external oscillator and X2 pin short.





(b) Crossed signal line


(c) Wiring near high alternating current

(d) Current flowing through ground line of oscillator (potential at points A, B and C fluctuates)

(d) Signals are fetched

2.4 PLL Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	AV _{DD}		3.0	3.3	3.6	V
PLL input frequency	f _{STD}		4		160	MHz
Divided ratio	m		2		32	
	n	Multiplication rate = n / (m x p)	2		128	
	р	··· , (···· F)	2		8	

Table 2-5: PLL Recommended Operating Range ($T_A = -40$ to $+85^{\circ}C$, $AV_{DD} = 3.3$ V ± 0.3 V)

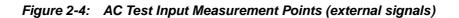
Table 2-6: PLL Specification ($T_A = -40$ to $+85^{\circ}C$, $AV_{DD} = 3.3 V \pm 0.3 V$)

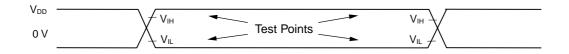
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	I _{ADD}				20	mA
VCO output frequency	f _{VCO}	frequency range set by parameters PLL_S[1:0]	50		230	MHz
PLL output clock	f _{FCLK}	set by parameters PLLOD[1:0]	6.25		115	MHz
PLL output ratio	duty	p = 2,4 or 8	45		55	%
Output period jitter	t _{pj}	peak to peak			0.4	ns
Output long term jitter	t _{lj}	peak to peak			2.0	ns
PLL lock time	tLock				1	ms

2.5 DC Characteristics

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	all except: nRST, X1	V _{IH}		2.0		5.5	V
Low-level input voltage	all except: nRST, X1	V _{IL}		0.0		0.8	V
High-level input voltage	X1	V _{IHX}		2.0		V _{DD}	V
Low-level input voltage	X1	V_{ILX}		0		0.8	V
Positive trigger voltage	nRST	V _P		1.4		2.4	V
Negative trigger voltage	nRST	V _N		0.8		1.6	V
Hysteresis voltage	nRST	V _H		0.3		1.5	V
Low-level output voltage		V _{OL}	I _{OL} = 0 mA			0.1	V
High-level output voltage		V _{OH}	I _{OH} = 0 mA	V _{DD} - 0.2			V
Static current consumption		I _{DDS}	V _I = V _{DD} or GND		tbd	tbd	μA
OFF-state output current		I _{OZ}	V _O = V _{DD} or GND			± 10	μA
Output short-circuit current Note 1		I _{OS}	$V_{O} = GND$			- 250	mA
Input leakage current	all except: TEST, DBGEN, X1	I _{LI1}	V _I = V _{DD} or GND			± 1	μA
	TEST, DBGEN	I _{LI2}	$V_{I} = V_{DD}$	28	83	190	μA
Pull-down resistor (50 KΩ) ^{Note 2}	TEST, DBGEN	R _{PD}	$V_{I} = V_{DD}$	18.9	39.8	107.1	KΩ
Low-level output current		I _{OL}	$V_{OL} = 0.4 V$	9.0			mA
High-level output current		I _{OH}	V _{OH} = 2.4 V	- 3.0			mA

Notes: 1. The output short circuit time is 1 second or less per pin of SoCLite.


2. The pull-down resistance varies depending on the input and output voltage.


2.6 AC Characteristics

2.6.1 General

Table 2-8:	Conditions	for AC	Characteristics
------------	------------	--------	-----------------

	UDL Signals	External Signals (Pins)		
Ambient temperature	T _A = -40 to +85°C			
Operating voltage	$V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0 \text{ V}$			
Input signal rise/fall time	ideal (= 0 ns)			
Output signal load capacitance	C _L = 1 pF	C _L = 50 pF		

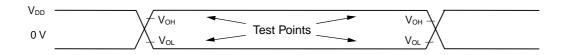
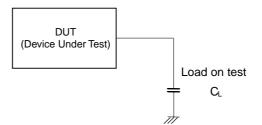
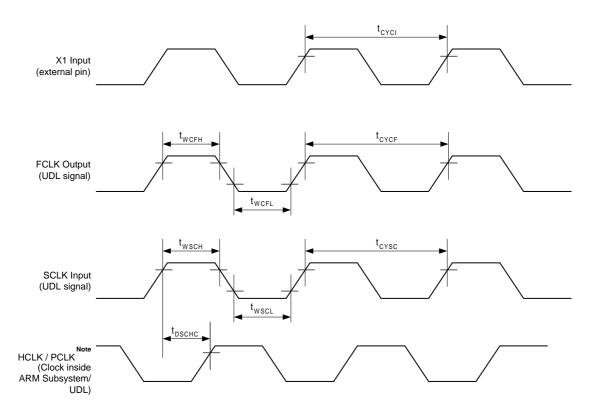



Figure 2-6: AC Test Load Condition

Caution: If the load capacitance of external signals (pins) exceeds 50 pF due to the circuit configuration, bring the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.


2.6.2 Clock Timing

NEC

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
X1 input cycle	t _{CYCI}		62.5	250	ns
SCLK input cycle	t _{CYSC}		28.6		ns
SCLK input high-level width	t _{WSCH}		12.9		ns
SCLK input low-level width	t _{WSCL}		12.9		ns
SCLK to PCLK/HCLK delay Note	t _{DSCHC}		4.15	10.69	ns
FCLK output cycle	t _{CYCF}		8.7	160	ns
FCLK output high-level width	t _{WFIH}		3.9	88	ns
FCLK output low-level width	t _{WCFL}		3.9	88	ns

Table 2-9: Clock AC Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.3$ V \pm 0.3 V)

Note: For synchronous APB connection only.

2.6.3 APB Bus Timing

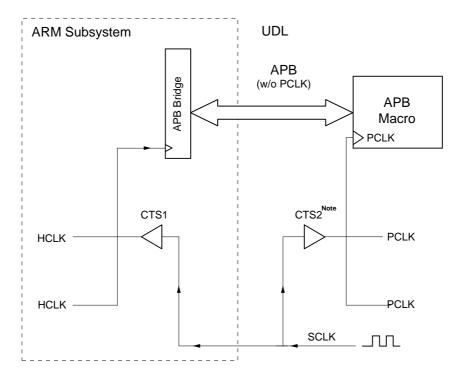


Figure 2-8: Clock Structure

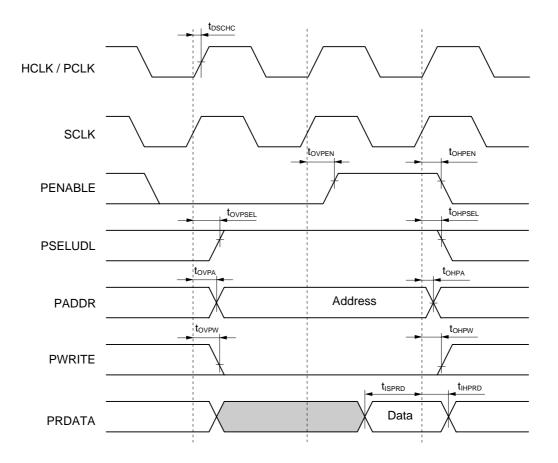
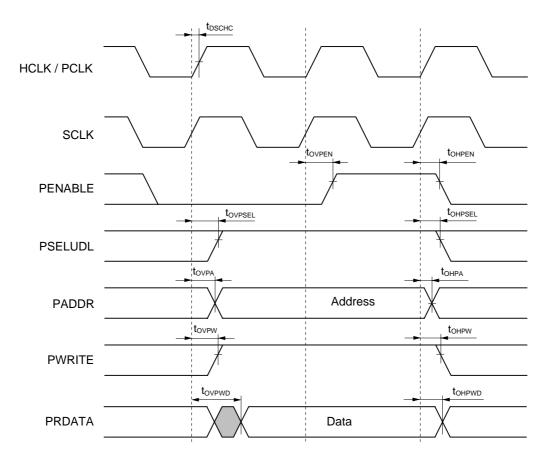

Note: For synchronous operation of APB bus, adjust CTS2 (SCLK to PCLK delay) to CTS1 (SCLK to HCLK delay).

Table 2-10:	APB Bus AC Characteristics	$(T_A = -40 \ tc)$	• +85°C, V _{DD} =	= 3.3 V ± 0.3 V)
-------------	----------------------------	--------------------	----------------------------	------------------

Parameter	Symbol	related to H	ICLK/PCLK	related to SCLK		Unit
i arameter	Symbol	MIN.	MAX.	MIN.	MAX.	Onit
PENABLE valid after rising clock	t _{OVPEN}		2.9		13.5	ns
PENABLE hold after rising clock	t _{OHPEN}	0.9		5.1		ns
PSELUDL valid after rising clock	t _{OVPSEL}		2.7		13.4	ns
PSELUDL hold after rising clock	t _{OHPSEL}	0.9		5.0		ns
PADDR valid after rising clock	t _{OVPA}		3.3		14.0	ns
PADDR hold after rising clock	t _{OHPA}	0.6		4.8		ns
PWRITE valid after rising clock	t _{OVPW}		2.9		13.6	ns
PWRITE hold after rising clock	t _{OHPW}	1.0		5.1		ns
PRDATA setup to rising clock	t _{ISPRD}	16.7		8.2		ns
PRDATA hold after rising clock	t _{IHPRD}	0		0		ns
PWDATA valid after rising clock	t _{OVPWD}		4.6		15.3	ns
PWDATA hold after rising clock	t _{OHPWD}	1.0		5.2		ns


Remark: If the APB bus is connected synchronously to the ARM subsystem use the min. and max. values related to HCLK/PCLK, if it is connected asynchronously use the min. and max. values related to SCLK.

Remark: If the APB bus is connected synchronously to the ARM subsystem use the min. and max. values related to HCLK/PCLK, if it is connected asynchronously use the min. and max. values related to SCLK.

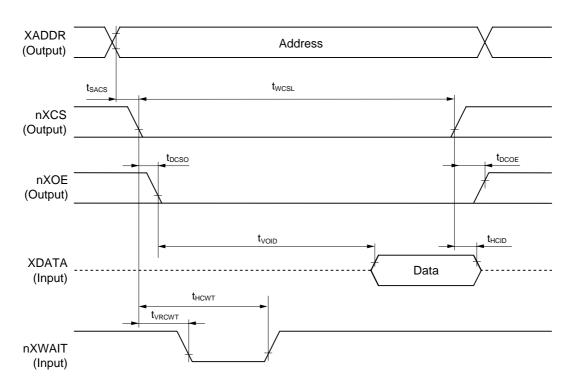
Remark: If the APB bus is connected synchronously to the ARM subsystem use the min. and max. values related to HCLK/PCLK, if it is connected asynchronously use the min. and max. values related to SCLK.

2.6.4 External Memory Bus Timing

	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
	Address setup time before nXCS \downarrow	t _{SACS}		T - 1.6		ns
	Delay time from nXCS \downarrow to nXOE \downarrow	t _{DCSO}			5.9	ns
	nXCS low level width (single read)	t _{WCSL}		(WST1 + n + 3) T - 1.2		ns
	nXCS low level width (page mode) Note 3	t _{WPCSL}		(WST1 + 2)T + (3 WST2 + 7)T - 1.2		ns
Read	Data input valid after nXOE \downarrow (single read)	t _{VOID}			(WST1 + n + 2)T - 22.8	ns
	Data input valid after nXOE↓ (page mode) ^{Note 3}	t _{VPOID}			(WST1 + 2)T - 22.8	ns
	Data input valid after address (inside page) ^{Note 3}	t _{VPAID}			(WST2 + 1)T - 18.6	ns
	Data input hold time (from nXCS↑)	t _{HCID}		0		ns
	Delay time from nXCS↑ to nXOE↑	t _{DCOE}			6.2	ns
	Data input valid after address (sequential read)	t _{VSAID}			(WST1 + n + 2)T - 18.6	ns
	nXWAIT valid after chip select (read)	t _{VRCWT}			(WST1 - 1)T - 13.0	ns
Wait	nXWAIT hold time (from chip select)	t _{HCWT}		n x T		ns
	nXWAIT valid after chip select (write)	t _{VWCWT}			(WST2 - 2)T - 13.0	ns
	Delay time from nXCS↓ to nXWEN↓ / nXBLS↓	t _{DCSW}			7.5	ns
	nXWEN / nXBLS low level width	t _{WWEL}		(WST2 + n + 1)T - 0.7		ns
	Delay time from nXWEN↑ / nXBLS↑ to nXCS↑ ^{Note 1}	t _{DWCS}		T - 7.3		ns
	Delay time from nXCS↓ to data output	t _{DCDO}			5.7	ns
Write	Data output hold time (from nXWEN↑ / nXBLS↑) Note 1	t _{HWED}		T - 9.6		ns
vine	nXCS low level width Note 2	t _{WWCSL}		(WST2 + n + 1)T - 1.2		ns
	Delay time from nXCS↑ to nXWEN↑ / nXBLS↑ ^{Note 2}	t _{DCWE}		1.6		ns
	Data output hold time (from nXCS [↑]) Note 2	t _{HCSD}		2T - 4.0		ns
	Delay time from nXWEN↓ / nXBLS↓ to next nXWEN↓ / nXBLS↓	t _{DSWE}		(WST2 + n + 3)T		ns
	Address hold time (from nXWEN [↑] / nXBLS [↑]) Note 1	t _{HWAD}		T - 8.6		ns

Table 2-11: External Memory Bus AC Characteristics ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 3.3$ V \pm 0.3 V) (1/2)

Table 2-11: External Memory Bus AC Characteristics ($T_A = -40$ to +85°C, $V_{DD} = 3.3$ V ± 0.3 V) (2/2)


	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Write	Address hold time (from nXCS [↑]) ^{Note 2}	t _{HCAD}		T - 5.2		ns
Turn	nXCS high level width (turn around inside the same memory bank)	t _{WCSH1}		(IDCY + 1)T - 1.2		ns
Around	nXCS high level width (turn around to a different memory bank)	t _{WCSH2}		(IDCY + 1)T - 4.1		ns

Notes: 1. Write access inside the same memory bank.

- 2. Consecutive write access to a different memory bank.
- **3.** It is assumed that nXWAIT input is kept HIGH during page mode. Therefore n is not considered in the equation.

Remarks: 1. T : Clock period of SCLK.

- 2. WST1 : Content of WST1 inside the appropriate SMCBCRx register, (WST1 shall be greater than value 2).
- **3.** WST2 : Content of WST2 inside the appropriate SMCBCRx register, (WST2 shall be greater than value 3).
- 4. n : Number of wait states inserted into the bus cycle by nXWAIT input.

Figure 2-11: External Memory Bus Single Read Cycle

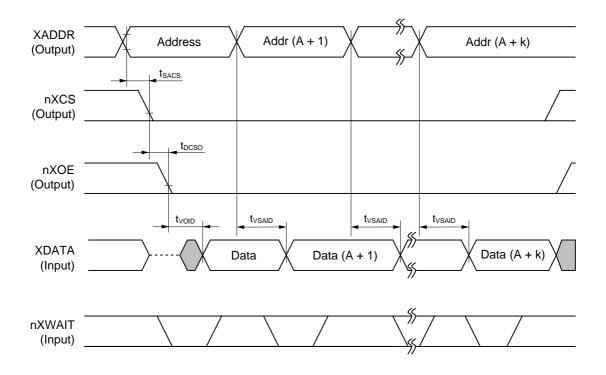
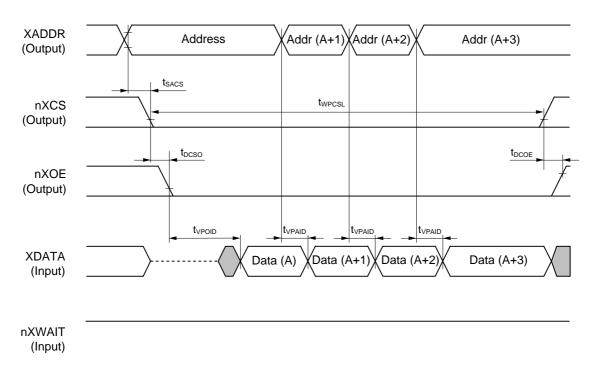



Figure 2-12: External Memory Bus Sequential Read Cycle

Figure 2-13: External Memory Bus Page Mode Read Cycle (32-bit wide)

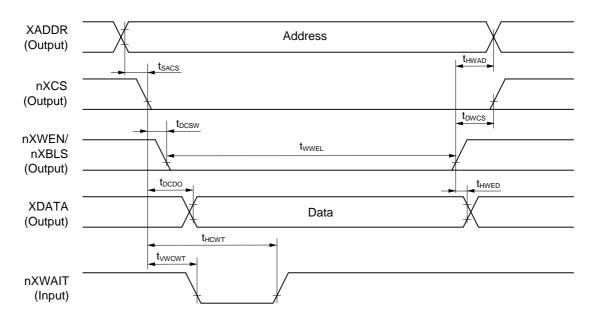
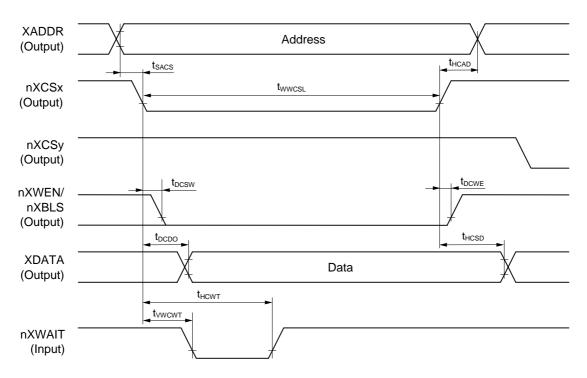



Figure 2-14: External Memory Bus Single Write Cycle

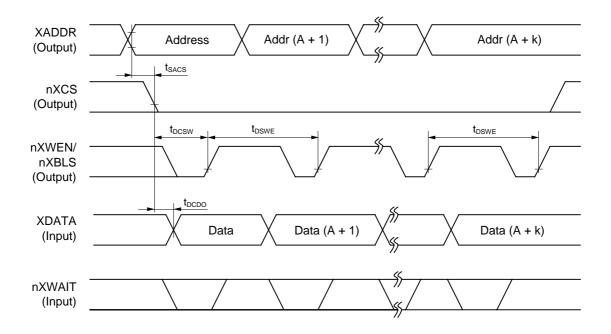
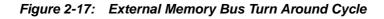
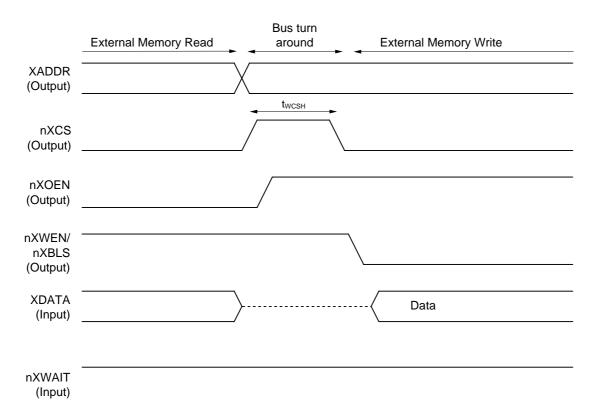
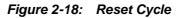
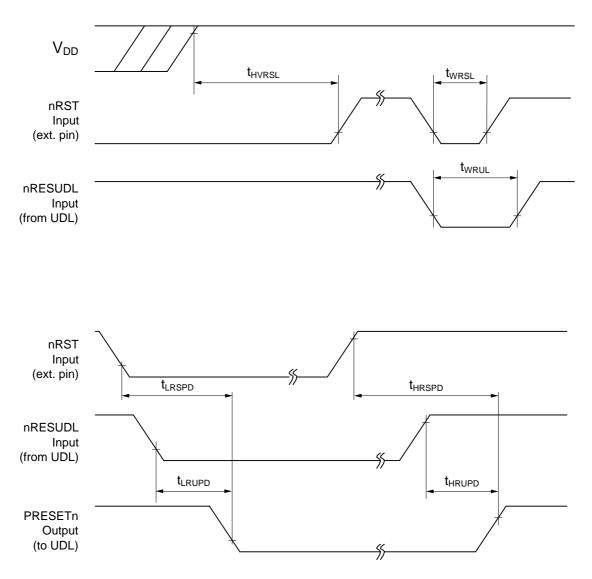




Figure 2-16: External Memory Bus Sequential Write Cycle

2.6.5 Reset Timing


Parameter	Symbol	Conditions	MIN.	MAX.	Unit
nRST low-level width	t _{WRSL}		2 T _{OSC} + 70		ns
nRESUDL low-level width	t _{WRUL}		2 T _{SCLK}		ns
nRST hold time from V _{DD}	t _{HVRSL}		2 T _{OST} + 1		μs
PRESETn delay from nRST falling edge	t _{LRSPD}			2 T _{OSC} + 70	ns
PRESETn delay from nRST rising edge	t _{HRSPD}			2 ¹⁴ x T _{OSC}	ns
PRESETn delay from nRESUDL falling edge	t _{LRUPD}			4 T _{SCLK}	ns
PRESETn delay from nRESUDL rising edge	t _{HRUPD}			7 T _{SCLK}	ns


Table 2-12: Reset AC Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.3$ V ± 0.3 V)

Remarks: 1. T_{SCLK} : Clock period of SCLK.

2. T_{OSC} : Clock period of oscillator.

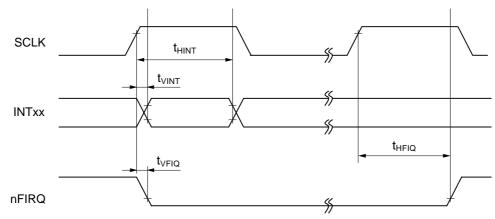
3. T_{OST} : Oscillation stabilization time.

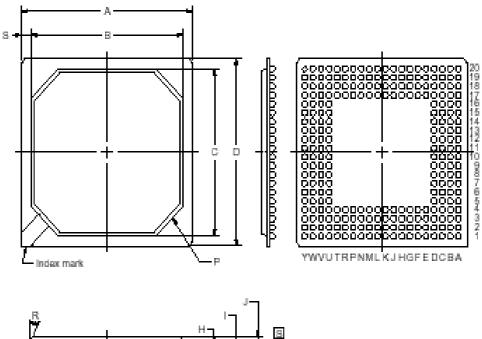
2.6.6 Interrupt Timing

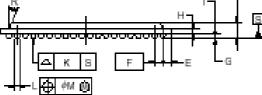
Table 2-13:	Interrupt AC Characteristics ($T_A = -40$ to +85°C, $V_{DD} = 3.3$ V ± 0.3 V)
-------------	--

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
INTxx input valid after rising edge of SCLK	t _{VINT}			2.5	ns
INTxx input hold time	t _{HINT}		10.4		ns
nFIRQ input valid after rising edge of SCLK	t _{VFIQ}			3.1	ns
nFIRQ input hold time	t _{HFIQ}		9.0		ns

Remark: The min. and max. values are related to SCLK.




Figure 2-19: Interrupt Cycle


nFIRQ should be active until exception handler is executed

3. PACKAGE DRAWING

256-PIN PLASTIC BGA (27x27)

NOTE

Each ball centerline is located within ϕ 0.3 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLINETERS
A	27.0±0.2
B	24.0
0	24.0
D	27.0 ± 0.2
E	1.44
F	1.27 (T.P.)
G	0.6±0.1
н	0.36
1	1.5310.15
J.	2.1310.25
К	0.15
L.	\$0.75±0.15
М	0.3
P	C3.95
R	30°
5	1.5
	\$25651-127-06-2

and a second of the second second

4. RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.

For details of the recommended soldering conditions, refer to information document **Semiconductor Device Mounting Technology Manual (C10535E).**

For soldering methods and conditions other than those recommended, consult NEC.

Soldering Method	Soldering Condition	Symbol Code of Recommended Soldering Condition	
Infrared reflow	Package peak temperature: 230°C Time of temperature higher than 210°C: 30 seconds max. Number of reflows: 3 max. Number of storage days after opening of dry pack: 3 Note	IR30-203-3	
VPS	Package peak temperature: 215°C Time of temperature higher than 200°C: 40 seconds max. Number of reflows: 3 max. Number of storage days after opening of dry pack: 3 ^{Note}	VP15-203-3	

 Table 4-1:
 Soldering Conditions

Note: The number of days refers to storage at 25°C, 65% RH MAX after the dry pack has been opened. After that, prebaking is necessary at 125°C for 20 hours (min.), 72 hours (max.).

Caution: Do not use two or more soldering methods in combination (except partial heating method).

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, GermanyTel:0211-65 03 01Fax:0211-65 03 327

Sucursal en España

Madrid, Spain Tel: 091- 504 27 87 Fax: 091- 504 28 60

Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

Branch Sweden

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos, Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

ARM, THUMB, ARM7TDMI and ARM7 are either registered trademarks or trademarks of ARM Limited in the UK and/or other countries.

All other brand names or product names are the property of their respective holders.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by th customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The information in this document is current as of 18.07.2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. While NEC endeavours to enhance the guality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and antifailure features. NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, antidisaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc.

If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- **Notes:** (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 - (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M5 2000.03

SoCLite

[MEMO]

NEC

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: +1-800-729-9288 +1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583	
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: +82-2-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608	
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-2719-5951		

I would like to report the following error/make the following suggestion:

Document title: _____

Document number: ____

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

[MEMO]